
Abstract

3D MAPPING OF RADAR FACIES IN A LATE PLEISTOCENE CARBONATE PLATFORM DEPOSIT, BAHAMAS 

HAZARD, Colby S., MCBRIDE, John H., RITTER, Scott M., TINGEY, David G., and KEACH, R. William II, Department of 
Geological Sciences, Brigham Young University, Provo, UT 84602, colbyhazard@gmail.com 

Two 3D ground-penetrating radar (GPR) surveys collected on northwest Andros Island, Bahamas, facilitate 
understanding the architecture and evolution of carbonate sedimentary environments that are often unseen in 2D 
outcrop and core. A 200-MHz 3D GPR dataset was collected over Late Pleistocene (isotope stage 5e) bedrock at a 
schoolyard in northwest Andros over an area of 61 m x 61 m. This survey reveals a ~18-m wide oolitic barform that 
trends southwest-northeast through the study area with foresets dipping to the northwest and a ~12-m-wide tidal 
channel that trends north-northwest through the northeast part of the survey. These two prominent features are 
surrounded and underlain by low-energy mud deposits. A deeper radar surface can be seen at ~6.4 m depth dipping 
gently to the west, and is interpreted to be a sequence boundary. In order to better resolve the lateral and vertical 
spatial interaction between the shallower features (<3.5 m), a higher resolution, 35.8 m x 29.6 m 400-MHz 3D GPR 
dataset was collected with the survey direction optimized to image the barform and its foresets (i.e., the profiles 
were collected in the direction of dip). The interpretation of these features is enhanced by modern analogs found 
nearby at Joulters Cays, and by three cores and 56 thin sections collected through the crest and toe of the barform, 
and through the channel feature. The integration of geophysical and geological data enables the recognition and 
reconstruction of a Pleistocene depositional environment and its associated fine-scale process sedimentology, 
including changing current directions, barform accumulation patterns and non-depositional and erosional events. 
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• The formation of modern limestones can be studied immediately 
adjacent to Pleistocene limestones preserved onshore

• The Pleistocene rock record reveals thousands of years of 
sedimentation patterns and how such patterns have evolved over 
time

• Clean limestone has a high resistivity, making it great for GPR

Why the Bahamas?



• Remote sensing method of imaging the shallow 
subsurface

http://www.environmental-geophysics.co.uk

What is GPR?



http://walter.kessinger.com/work/seisx_interpretation.html

GPR vs. Seismic Reflection

Sparks and Rankey, 2013
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GPR = High resolution

3 m

5-10 cm vertical resolution!

3 m
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Methods
• GPR Profiles and 

hand samples from 
eight other locations 
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2. Methods

• 200 ft X 200 ft (61 m X 61 m) 
200 MHz survey
• 2 ft spacing between profiles

• 117.5 X 97 ft (35.8 X 29.6 m) 
400 MHz survey
• 1 ft spacing between profiles

• 3 Cores:
• 38 ft, 11 in (12.5 m) total core 

from 3 holes

RB1

RB2

RB3

N

From www.bing.com/maps/
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Two 3D GPR Data Sets:
200 MHz (~10 cm Vertical Resolution)
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Two 3D GPR Data Sets:
400 MHz (~5 cm Vertical Resolution)
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Three Boreholes

2
0

0
 ft. (6

1
 m

)

200 ft. (61 m)

200 MHz

N

RB1

RB2
RB3



RB1 
(Crest)

RB2 
(Toe)

RB3 
(Channel)

0 ft

0 ft

0 ft

2 ft

1 ft

1 ft

16 ft 4 in

12 ft

10 ft 7 in

The Cores: 
38 ft, 11 in. total (~12 m)



Core: RB1 
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Radar Facies
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Conclusion

• 3D GPR imaging captures the complex heterogeneity 
and process sedimentology of a carbonate 
paleoenvironment, which are often missed in 2D studies

• Clean sediment from the sand wave is surrounded by 
muddy sediments, giving insights into aquifer/reservoir 
fluid flow and compartmentalization at the sub-seismic 
scale

• The presence of a clean, oolitic sand wave on NW 
Andros Island indicates a relatively high-energy 
environment once existed in an area previously assumed 
to be a low-energy, back-shoal environment, and offers 
new insights where no outcrops are available.  
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Why Ground-Penetrating Radar 
(GPR)?



Resolution

• “GPR can detect geological features thinner than the 
calculated vertical resolution (Grasmueck 1996; Lane et 
al. 2000), in this case ‘‘thin’’ beds (0.1 m 2 0.01 m) and 
laminae (, 0.01 m). Under these circumstances the radar 
response constitutes an interference pattern still 
providing useful information, namely the average dip 
angle and direction of crossbed sets or sets of laminae
(Kruse and Jol 2003; Guha et al. 2005)” (Neal et al., 
2008).
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