ORIGIN OF PHOTOSYNTHESIS
The biochemistry of key housekeeping enzymes may suggest evolutionary history. Many are metal proteins, especially with Fe-S clusters, including some key proteins in photosynthesis. Nitrogenase uses Fe-Mo, urease uses Ni. The oxygen-evolving complex is Mn-based. Such clues suggest photosynthesis began in and around hydrothermal systems, possibly originally as an accessory, facultative, process. .Support comes from the role of heat shock proteins, essential for assembly of rubisco. A possible speculation is that Haem may have come from an alkaline system, perhaps around ultramafic volcanism.
Perhaps infrared thermotaxis, in a hydrothermally supported organism, allowed the start of anoxygenic photosynthesis, followed by the development of oxygenic photosynthesis in a symbiotic chimaera in a microbial mat. With the evolution of cyanobacteria, capable not only of anoxygenic and oxygenic photosynthesis, but also nitrogen fixation, life could escape the hydrothermal ghetto and occupy the planet. Walker-world intervals (air more reduced than sediment) may have occurred, perhaps many times, but after 3.5Ga, Earth has probably in general had relatively oxidised air, though without abundant free molecular oxygen until the Proterozoic.