SECULAR DECREASE IN ATMOSPHERE d15N: ATMOSPHERE ORIGIN AND CRUSTAL CYCLING
Modern atmospheric N2, defined to be 0 per mil, is sequestered by microorganisms to form organic N compounds having an average d15N of - 4 per mil. After maturation N is incorporated into sediments as kerogen with an average d15N of + 4 per mil. During diagenesis and metamorphism some N is transferred to the crustal silicate reservoir where N as NH4 substitutes for K, also of about 4 per mil. Accordingly, the atmosphere crust fractionation is - 4 per mil. If similar processes were operating in the Archean, then the atmosphere at 2.7 Ga would have been 11 to 20 per mil. The secular trends of decreasing d15N but increasing N-content are interpreted as progressive transfer of N from the atmosphere to the crust. These results support the model for acquisition of the atmosphere from late accretion of a veneer of C1 carbonaceous chondrites and comets where (d15N=+30 to +42) (Javoy), ruling out the model of mantle degassing d15N=-5 and hydrodynamic fractionation (Marty). The mass of N in the initial atmosphere is estimated at 13 × 1018 kg and in the present atmosphere is 3.8 × 1018 kg. Given 2.1 × 10 18 kg N in the continental crust, large quantities of continental crust must have been recycled into the mantle to account for isotopic and chemical mass balance.