2004 Denver Annual Meeting (November 710, 2004)
Paper No. 66-4
Presentation Time: 8:45 AM-9:00 AM

INCORPORATING NONLINEAR RULES IN A WEB-BASED INTERACTIVE LANDFORM SIMULATION MODEL (WILSIM)

LUO, Wei, Northern Illinois Univ, Dept Geography, De Kalb, IL 60115-2854, wluo@niu.edu, PERONJA, Edit, Computer Science, Northern Illinois Univ, Dept. of Computer Science, DeKalb, IL 60115, DUFFIN, Kirk, Computer Science, Northern Illinois Univ, Dept. of Computer Science, Northern Illinois University, DeKalb, IL 60115, and STRAVERS, Jay, Dept. of Geological and Environmental Sciences, Northern Illinois Univ, DeKalb, IL 60115

This paper presents a Web-based Interactive Landform Simulation Model (WILSIM) that integrates the simplicity of cellular automata (CA) algorithm and the complexity of nonlinear rules of sediment erosion and transportation. In CA, a rainfall event (termed precipiton) is randomly dropped onto a cell of a topographic grid and routed to the lowest of its 8 neighboring cells. The precipiton continues to flow downhill and, along the way, it erodes bedrock material and carries the sediment with it until it lands in a pit, reach the edges, or its carrying capacity is exceeded. This process is repeated (iterated) many times to simulate landform evolution. In the linear version of the model, the amount of erosion is linearly proportional to local slope and erodibility at any given cell and the precipitons (i.e., rainfall events) are independent of each other. The model is implemented as a Java applet, allowing for widest possible accessibility via a standard web browser and interactive user exploration, which is ideal for education purposes. However, the linear rules preclude the simulation of some nonlinear behaviors of the natural systems. Incorporating nonlinear rules into the CA-based Java applet brings the model closer to reality while maintaining its easy accessibility and interactiveness. In the nonlinear version, the amount of erosion at any given cell is a power function of slope and discharge, which is related to the contributing area (represented by the number of cells flowing into the cell under consideration, i.e., precipitons are no longer independent but interrelated). The linear version becomes a special case of the nonlinear version with power coefficients set to unity. Preliminary visual inspection of the simulation results indicates that the nonlinear model generates much more realistic-looking landforms than the linear counterpart. The effect of various factors on landform evolution will be evaluated by changing parameters such as lithology (high vs. low erodibility), climate (wet vs. dry) and tectonic uplift rate. Fractal dimensions and hypsometric curves of the evolving resultant landforms under different scenarios and between the linear and nonlinear versions will be compared and discussed. WILSIM can be accessed at http://www.niu.edu/landform . This project is funded by NSF.

2004 Denver Annual Meeting (November 710, 2004)
General Information for this Meeting
Session No. 66
Geomorphology II
Colorado Convention Center: 107/109
8:00 AM-12:00 PM, Monday, 8 November 2004

Geological Society of America Abstracts with Programs, Vol. 36, No. 5, p. 171

© Copyright 2004 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.