QUATERNARY GEOLOGY OF THE CALICO MOUNTAINS PIEDMONT AND COYOTE LAKE, MOJAVE DESERT, CALIFORNIA
The study area lies at the boundary between fault domains composed of northwest-striking faults and east-striking faults in the northeast region of the Mojave Desert. Mapping revealed a previously unmapped north-striking Quaternary fault, named the Tin Can Alley (TCA) fault, in the Calico piedmont, which may link to the Southwest Coyote Basin (SWCB) fault. The SWCB fault, first mapped by Meek(1994), is a northwest-striking strike-slip fault with a component of compression. The fault cuts Pleistocene alluvial units and is associated with Pleistocene groundwater-discharge deposits. South of the SWCB fault lies the north striking TCA fault, a 7+ km long complex set of faults that run the length of the piedmont. They cut middle Pleistocene alluvial fan deposits and make several right steps to produce grabens. Fan deposits exhibit ~1 m high scarps, truncations and warps.
Mapping has also revealed extensive alluvial fans deposited under past climatic conditions. Fans consist mainly of Pleistocene, early and middle Holocene deposits. GIS analysis shows that 25% of the area is covered by Pleistocene alluvial deposits, 17% is covered by Pleistocene to early Holocene alluvial deposits, 45% is covered by mid Holocene deposits, and only 10% is covered by late Holocene alluvial deposits. The spatial distribution suggest most of these fans appear to be relicts of an aggradational cycle during past climates, which apparently were unlike the modern climate.