Northeastern Section (39th Annual) and Southeastern Section (53rd Annual) Joint Meeting (March 25–27, 2004)

Paper No. 6
Presentation Time: 2:40 PM

EXAMINING NITROGEN DYNAMICS IN HETEROGENEOUS SOILS: PRELIMINARY WORK


JOLICOEUR, Jean Louis-Charles, Geological Sciences and Environmental Studies, Binghamton Univ, P.O. Box 6000, Binghamton, NY 13902 and SALVAGE, Karen M., Geological Sciences and Environmental Studies, Binghamton University-SUNY, P.O Box 6000, Binghamton, NY 13902, jjolico1@binghamton.edu

A study is being conducted in the Catatonk Creek watershed, in the headwaters of the Susquehanna River, in order to determine the vulnerability of the valley-fill aquifers to nitrate contamination. The overall objective of this study is to evaluate the nitrogen retention mechanisms for a combination of different soil types and different agricultural land uses and is scheduled to last approximately 2 years with ongoing fieldwork starting the summer of 2003 to the spring of 2005. This project will investigate the residence time and the quantity of the nitrate leached below the root zone and due to enter eventually the groundwater, and the existence of subsurface flow draining the nitrate from the root zone to the adjacent streams. Finally, a numerical and an analytical model will be developed that can be used as a tool for predicting the long-term effect of fertilizer application as a source of nitrate loading to the underlying aquifer or to surface water.

In order to address the objectives of this research, a field investigation of three experimental sites will be carried out. Data will be collected on land uses, agricultural practices, climatic factors, soil properties, nitrogen dynamics in the soil, and the flow pattern in the unsaturated soil zone. At each site soil physical and chemical properties will be determined for each layer of the root zone to a depth of 90 cm. The soil physical properties include soil moisture, saturated and unsaturated hydraulic conductivity, bulk density, soil temperature, particle size distribution and its water retention curve. Soil water content and matric potential will be monitored using conventional and geophysical techniques including matric potential blocks, water content reflectometer sensors, Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR). The soil chemical properties include soil total organic carbon and total nitrogen, nitrate (NO3) and ammonium (NH4) and will be determined at the beginning and at the end of the field season. The soil water will be collected monthly at three depths at each site throughout the growing season and will be analyzed for nitrate and ammonium.