2005 Salt Lake City Annual Meeting (October 1619, 2005)
Paper No. 211-13
Presentation Time: 11:30 AM-11:45 AM


BRATTON, John F., Coastal and Marine Geology Program, U.S. Geological Survey, 384 Woods Hole Rd, Woods Hole, MA 02543-1598, jbratton@usgs.gov, CRUSIUS, John, USGS, Woods Hole, MA 02543, CROSS, VeeAnn A., USGS, Woods Hole, MA 02543, and KOOPMANS, Dirk J., ETI Professionals, Inc, USGS, Woods Hole, MA 02543

The Neuse River Estuary (NC), a broad V-shaped water body (avg. ~70 km x 6.5 km x 3.6 m) located on the southwestern end of Pamlico Sound, suffers from severe eutrophication. Several water quality models have recently been developed to aid in management of nutrient loading to the estuary. To constrain model estimates of the fraction of nutrients delivered by direct ground-water discharge, field measurements were made in April 2004 and May 2005. Continuous resistivity profiling (CRP) was used to measure electrical resistivity of sediments, a property that is sensitive to differences in salinity of submarine ground water. The 2004 and 2005 surveys used floating 100-m and 50-m CRP streamers, respectively. A total of ~200 km of data was collected in the upstream half of the estuary and processed using AGI EarthImager 2D software. Penetration was ~20-27 m below the seafloor (mbsf) for the 100-m streamer, and ~12-14 mbsf for the 50-m streamer. At four transect sites extending up to 70 m from shore, piezometers were hand-driven to depths of up to 4 mbsf in water depths of up to 2.5 m to collect ground-water samples for measurement of salinity, nutrients, and radon and radium isotopes. Data from CRP surveys indicated that high-resistivity (fresher) ground water is present at depths of ~3-5 mbsf in a zone ~100 m wide parallel to shore that becomes narrower downstream as the estuary widens and becomes more saline. This is consistent with piezometer samples that yielded salinities of <1 psu 35-50 m from shore at some locations. At several piezometer sites, ground-water samples were more saline than overlying waters, suggesting that shallow ground water reflects average annual salinities while surface water salinity varies seasonally. The depth to fresher ground water increases offshore, gradually at first and then sharply. In some upstream areas, fresher water reappears extending more than 1 km offshore at a consistent depth of 3-5 mbsf. A brackish zone more than 10 m thick separates the nearshore and offshore fresher zones. Changes in underlying geology may be partially responsible for this. These survey results will be used in combination with measurements of radon and radium in surface water, as well as seepage meter measurements to calculate the quantity of ground water and the associated nutrient load being delivered to the estuary.

2005 Salt Lake City Annual Meeting (October 1619, 2005)
General Information for this Meeting
Session No. 211
Interactions of Groundwater and Surface Water at the Land-Sea Margin
Salt Palace Convention Center: 250 DE
8:00 AM-12:00 PM, Wednesday, 19 October 2005

Geological Society of America Abstracts with Programs, Vol. 37, No. 7, p. 471

© Copyright 2005 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.