2005 Salt Lake City Annual Meeting (October 16–19, 2005)

Paper No. 2
Presentation Time: 1:50 PM

STRATIGRAPHY, SEDIMENTOLOGY AND DEPOSITIONAL ENVIRONMENT OF THE BURNS FORMATION, MERIDIANI PLANUM, MARS


GROTZINGER, John P., Geological and Planetary Sciences, Caltech, 1200 E. California, Pasadena, CA 91125 and ATHENA, Science Team, Meridiani, Mars, 00000, grotz@gps.caltech.edu

Outcrop exposures of sedimentary rocks at the Opportunity landing site (Meridiani Planum) form a set of genetically related strata defined here informally as the Burns formation. This formation can be subdivided into lower, middle, and upper units which, respectively, represent eolian dune, eolian sand sheet, and mixed eolian sand sheet and interdune facies associations. Collectively, these three units are at least 7 meters thick and define a “wetting-upward” succession. The Burns lower unit is interpreted as a dry dune field (grains derived from evaporites), whose preserved record of large-scale cross-bedded sandstones indicates either superimposed bedforms of variable size or reactivation of lee-side slip faces by episodic (possibly seasonal) changes in wind direction. The boundary between the lower and middle units is a significant eolian deflation surface. This surface is interpreted to record eolian erosion down to the capillary fringe of the water table, where increased resistance to wind-induced erosion was promoted by increased sediment cohesiveness in the capillary fringe. The overlying Burns middle unit is characterized by fine-scale planar-laminated to low-angle-stratified sandstones. These sandstones accumulated during lateral migration of eolian impact ripples over the flat to gently undulating sand sheet surface. In terrestrial settings, sand sheets may form an intermediate environment between dune fields and interdune or playa surfaces. The contact between the middle and upper units of the Burns formation is interpreted as a diagenetic front, where recrystallization in the phreatic or capillary zones may have occurred. The upper unit of the Burns formation contains a mixture of sand sheet facies and interdune facies. Interdune facies include wavy bedding, irregular lamination with convolute bedding and possible small tepee or salt-ridge structures, and cm-scale festoon cross-lamination indicative of shallow subaqueous flows marked by current velocities of a few tens of cm/sec. Most likely, these currents were gravity-driven, possibly unchannelized flows resulting from the flooding of interdune/playa surfaces. However, evidence for lacustrine sedimentation, including mudstones or in situ bottom-growth evaporites, has not been observed so far at Eagle and Endurance craters.