2006 Philadelphia Annual Meeting (2225 October 2006)
Paper No. 233-5
Presentation Time: 1:30 PM-5:30 PM


KELLER, G. Randy, School of Geology and Geophysics, University of Oklahoma, 100 East Boyd, Norman, OK 73019, grkeller@gcn.ou.edu, QUEZADA, Oscar, Anadarko Petroleum Corporation, 1201 Lake Robbins Drive, The Woodlands, TX 77380, XIE, Hongjie, Earth and Environmental Science, Univ of Texas at San Antonio, 6900 N. Loop 1604 W, San Antonio, TX 78249, and GRANILLO, Jose, El Paso Water Utilities, 1154 Hawkins Blvd, El Paso, TX 79925

The ultimate goal of many studies that employ remote sensing and geoinformatics technologies is to characterize the 3-D structure of a region of interest in order to address key societal, scientific, and engineering questions. In this context, 3-D implies determining the properties of a volume and mapping subsurface features. This can be accomplished by using geophysical techniques and drilling data to measure seismic velocities, density, magnetic properties, electrical properties, anisotropy, seismic attenuation (Q), temperature, etc. and map their distribution via volume elements that can take several forms. In addition, interfaces that represent features such as stratigraphic boundaries, faults, magmatic bodies, etc. must also be mapped in order to properly characterize a region. These goals can only be achieved through a highly integrated approach that takes advantage of all of the geological and geophysical constraints available. Drill holes and geophysical surveys are relatively expensive, and thus, remote sensing data are very valuable to both measure properties of the exposed land surface and as a tool to extrapolate laterally from locations where drilling and geophysical data provide vertical control. We present examples of an integrated approach in which remote sensing data play an important role in both qualitative (overlay of data layers) and quantitative (data fusion) analyses. These applications include an analysis of the Taos trough region of northern New Mexico, a study to find a site for a brine disposal well for a large desalinization project, and a study of Quaternary faulting. The last of these studies involves formal data fusion via a Hue-Saturation-Values (HSV) transformation approach that accomplishes the fusion of surface roughness and shallow subsurface information from Airborne Synthetic Aperture Radar (AIRSAR) data with surface spectral reflectivity from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. The fused image contains new information and brings out new features that are not evident in the original images and also helps to identify many features that are not clear in the original images.

2006 Philadelphia Annual Meeting (2225 October 2006)
General Information for this Meeting
Session No. 233--Booth# 113
Remote Sensing/Geographic Information System (Posters)
Pennsylvania Convention Center: Exhibit Hall C
1:30 PM-5:30 PM, Wednesday, 25 October 2006

Geological Society of America Abstracts with Programs, Vol. 38, No. 7, p. 563

© Copyright 2006 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.