Paper No. 10
Presentation Time: 8:00 AM-6:00 PM
Comparing Carbon Sequestration Rates in Tropical and Temperate Wetlands Using Radiometric Dating
Wetlands constitute a large terrestrial carbon pool and play an important role in global carbon cycles as carbon sequestering systems. The goal of this study is to compare recent carbon sequestration rates in temperate and tropical flow-through wetlands using radiometric dating with 137-Cs, testing the hypothesis that tropical wetlands accumulate more carbon than do similar wetlands located in temperate climates. Soil cores were extracted from Old Woman Creek (OWC), a 56-ha freshwater estuarine wetland in Ohio, and from a similar 116-ha flow-through wetland (ELR) located at EARTH University in northeastern Costa Rica. OWC has a peak in 137-Cs concentration that indicated an accumulation of 16-18 cm of sediments in the last 42 years, whereas ELR accumulated 30-38 cm in that same period of time. Carbon content of these wetland soils was also determined. The carbon density of the sediment in OWC was on average 53 gC kg-1 soil, with 80% as organic carbon; in ELR the average carbon density was 110 gC kg-1 soil, with 91% of this as organic carbon. From these results, it is estimated that the temperate wetland accumulated 1.42 tonsC ha-1 yr-1, while the tropical wetland accumulated 2.57 tonsC ha-1 yr-1.
© Copyright 2008 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.