2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM

Paper No. 22
Presentation Time: 8:00 AM-6:00 PM

A Finite Element Solution for the Fractional Advection- Dispersion Equation

HUANG, Quanzhong, Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China, HUANG, Guanhua, Department of Irrigation and Drainage, College of Water Conservation and Civil Engineering, and Chinese-Israeli International C, China Agricultural University, Beijing, 100083, China and ZHAN, Hongbin, Department of Geology & Geophysics, Texas A&M University, Mail Stop 3115, College Station, TX 77843, qjz_mail@yahoo.com.cn

The fractional advection dispersion equation (FADE) known as its non-local dispersion, has been proven to be a promising tool to simulate anomalous solute transport in groundwater. We present an unconditionally stable finite element (FEM) approach to solve the one-dimensional FADE based on the Caputo definition of the fractional derivative. The stability and accuracy of the FEM solution is verified against the analytical solution, and the sensitivity of the FEM solution to the fractional order α and the skewness parameter b is analyzed. We find that the proposed numerical approach converge to the numerical solution of the advection-dispersion equation (ADE) as the fractional order a equals 2. The problem caused by using the first- or third-kind boundary with an integral-order derivative at the inlet was remedied by using the third-kind boundary with a fractional-order derivative there. The FEM solution of this study has smaller numerical dispersion than that of the FD solution by Meerschaert and Tadjeran(J Comput Appl Math 2004). For a given a, the spatial distribution of concentration exhibits a symmetric non-Fickian behavior when b =0. The spatial distribution of concentration shows a Fickian behavior on the left-hand side of the spatial domain and a notable non-Fickian behavior on the right-hand side of the spatial domain when b =1, whereas when b =-1 the spatial distribution of concentration is the opposite of that of b =1. Finally, the numerical approach was applied to simulate the atrazine transport in a saturated soil column and the results indicated that the FEM solution of the FADE could better simulate the atrazine transport process than that of the ADE, especially at the tail of the breakthrough curves.