2009 Portland GSA Annual Meeting (18-21 October 2009)

Paper No. 13
Presentation Time: 5:00 PM

INFLUENCE OF GROWING STRUCTURES ON CRETACEOUS ALLUVIAL SYSTEMS ALONG THE CORDILLERAN THRUST-BELT FRONT, VALLEY OF FIRE, SOUTHERN NEVADA


MCNAMARA, Kelsey C., Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001 and SCHMITT, James G., Department of Earth Sciences, Montana State University, Bozeman, MT 59717, kelseymcnamara@yahoo.com

Outstanding preservation and exposure of Cretaceous tectogenic deposits in the North Muddy Mountains of southern Nevada provide a rare opportunity to examine the influence of frontal structures on provenance and sediment dispersal to the Cordilleran foreland basin. Eastward migration of the Sevier wedge-top depozone into the contiguous foredeep depozone was facilitated by development of the Willow Tank thrust-cored fault-propagation fold. The resulting thrust-cored frontal ridge diverted pre-existing fluvial systems of the Willow Tank Formation and promoted proximal alluvial fan deposition of the Baseline Formation. The Albian Willow Tank Formation represents the earliest foreland basin sediments derived from large, integrated drainage basins of the thrust belt interior. Sandstone point counts reveal an up-section increase in quartz locally derived from erosion from the Jurassic Aztec Sandstone along the frontal anticlinal ridge in the proximal Willow Tank thrust hanging wall. Continued fold growth is documented by growth strata development in and provenance of the overlying White Member of the Baseline Formation. Conglomeratic clast counts and detailed lithofacies analyses in the Cenomanian Red Member of the Baseline Formation record sequential unroofing of the frontal anticline and interaction of adjacent alluvial fan and fluvial depositional environments, respectively. Clast counts of poorly-sorted, massive ungraded conglomerates indicate a reverse clast stratigraphy based on progressively increasing amounts of carbonate framework clasts up-section. This trend is attributed to exposure and erosion of Upper Paleozoic strata in the Willow Tank hanging-wall anticline. Evidence of interfingering depositional environments is shown by up-section trends including: 1) replacement of poorly-sorted and organized coarse-grained conglomerates by well-sorted stratified to normally-graded conglomerates, 2) an overall decrease in grain size, 3) a decrease in soft-sediment deformation and increase in bioturbation, and 4) an increase in lateral bed continuity. This up-section transformation represents a spatial and temporal transition from fold-proximal debris flow-dominated fan deposits to those of an integrated braided stream network transporting detritus from interior thrust sheets.