The 3rd USGS Modeling Conference (7-11 June 2010)

Paper No. 2
Presentation Time: 3:20 PM

THE VISION OF AN OPEN ENVIRONMENTAL MODELLING PLATFORM – SEAMLESSLY LINKING GEOSCIENCE DATA, CONCEPTS AND MODELS TO AID DECISION MAKING IN TIMES OF ENVIRONMENTAL CHANGE


KESSLER, Holger, HUGHES, Andrew, GILES, Jeremy and PEACH, Denis, British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, NG12 5GG, United Kingdom, hke@bgs.ac.uk

Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production.

These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions'. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions.

Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological data to groundwater models but these models are only aimed at solving one specific part of the earth's system, e.g. the flow of groundwater to an abstraction borehole or the availability of water for irrigation. Particular problems arise when model data from two or more disciplines are incompatible in terms of data formats, scientific concepts or language. Other barriers include the cultural segregation within and between science disciplines as well as impediments to data exchange due to ownership and copyright restrictions. OpenMI and GeoSciML are initiatives that are trying to overcome these barriers by building international communities that share vocabularies and data formats.

This paper gives examples of the successful merging of geological and hydrological models from the UK and will introduce the vision of an open Environmental Modelling Platform which aims to link data, knowledge and concepts seamlessly to numerical process models. Last but not least there is an urgent need to create a Subsurface Information System akin to a Geographic Information System in which all results of subsurface modelling can be visualised and analysed in an integrated manner and thereby become useful for decision makers.

W:\Teams\GMS\3dModellingDevCap\Reports\Env_Mod_Platt\triangle.PNG

Figure 1 Diagram showing the conceptual model of the Environmental Modelling Platform