2011 GSA Annual Meeting in Minneapolis (912 October 2011)
Paper No. 104-6
Presentation Time: 9:00 AM-6:00 PM

GEOLOGICAL AND GEOPHYSICAL OBSERVATIONS OF NORMAL OCEANIC CRUST

GILBERT, Lisa A., Maritime Studies Program, Williams College and Mystic Seaport, 75 Greenmanville Ave, Mystic, CT 06355, lisa.gilbert@williams.edu and SALISBURY, Matthew H., Geological Survey of Canada, Bedford Institute of Oceanography, NS B2Y 4A2 Canada, Dartmouth, Canada

Observations of exposed oceanic crust in tectonic windows and analogies to ophiolites have helped advance our understanding of the geologic nature of oceanic crust. In recent years, the Integrated Ocean Drilling Program (IODP) has succeeded in reaching through lavas and dikes to gabbros for the first time in a section of normal oceanic crust. IODP Hole 1256D provides a unique opportunity to integrate geologic and geophysical data at several scales. Samples and geophysical data logged in the open hole allow us to ground-truth the geophysical layers identified by regional seismic experiments. To determine the influence of cracks on seismic velocity at several scales, we first need an accurate ground-truth, in the form of laboratory velocity of crack-free, or nearly crack-free samples. Hand samples include few cracks since drilling recovery generally excludes cracks except those that have been filled or are small enough to be preserved within the 6 cm diameter core. The influence of cracks on seismic velocity is then determined as the difference between seismic velocities of hand samples and seismic velocities logged in the open hole or from regional experiments. Crack-free velocities calculated from simple models of logging and laboratory porosity data for different lithologies and facies suggest that crustal velocities in the lavas and upper dikes are strongly influenced by porosity. In particular, our models demonstrate significant large-scale porosity in the lavas, especially in the units previously identified as fractured flows and breccias. In the lower dikes and gabbros porosity drops to less than 1% and crustal velocities are controlled by other factors. At this location, seismic velocity and porosity both change noticeably at the transition between lavas and dikes and the seismic layer 2/3 boundary is estimated to be within about 100 m of the bottom of the hole and likely near or coincident with the transition between dikes and gabbros.

2011 GSA Annual Meeting in Minneapolis (912 October 2011)
General Information for this Meeting
Session No. 104--Booth# 201
Combining Geology and Geophysics (Posters)
Minneapolis Convention Center: Hall C
9:00 AM-6:00 PM, Monday, 10 October 2011

Geological Society of America Abstracts with Programs, Vol. 43, No. 5, p. 278

© Copyright 2011 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.