2011 GSA Annual Meeting in Minneapolis (912 October 2011)
Paper No. 148-7
Presentation Time: 9:30 AM-9:45 AM

CONSTRAINTS ON NEOPROTEROZOIC INTRAPLATE MAGMATISM IN THE KALAHARI CRATON: GEOCHRONOLOGY AND PALEOMAGNETISM OF ~890-795 MA EXTENSION-RELATED IGNEOUS ROCKS IN SW NAMIBIA AND ADJACENT PARTS OF SOUTH AFRICA

HANSON, Richard E.1, RIOUX, Matthew2, BOWRING, Samuel A.2, GOSE, Wulf A.3, BARTHOLOMEW, L. Taylor4, KILIAN, Taylor M.5, EVANS, David A.D.6, PANZIK, Joseph5, HOFFMANN, Karl Heinz7, and REID, David L.8, (1) School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX 76129, r.hanson@tcu.edu, (2) Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, (3) Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX 78712, (4) School of Geology, Energy and the Environment, Texas Christian University, Fort Worth, TX 76129, (5) Department of Geology and Geophysics, Yale University, New Haven, CT 06520, (6) Department of Geology and Geophysics, Yale University, New Haven CT 06520-8109, USA, New Haven, CT 06520, (7) Geological Survey of Namibia, Windhoek, Namibia, (8) Department of Geological Sciences, University of Cape Town, Cape Town, South Africa

Intraplate igneous rocks with ages of ~890-750 Ma are abundant along the margins of the Kalahari craton in southern Africa. They have the potential to provide useful piercing points for placing Kalahari within a Rodinia reconstruction, but in many cases are strongly tectonized within ~550 Ma orogenic belts. The best-preserved examples of these rocks, and probably the only ones suitable for paleomagnetic studies, occur near the SW craton margin in Namibia and adjacent parts of South Africa. We report results of ongoing, integrated geochronological and paleomagnetic studies of these units, including A-type felsic rocks of the Richtersveld suite (RS), which trend NE from the Neoproterozoic continental margin, and the younger, more extensive, N- to NE-trending Gannakouriep diabase dike swarm (GDS). The GDS is up to 300 km wide and records generation of large volumes of basaltic magma preceding final stages of rifting at ~750 Ma along the craton margin, which led to opening of the Adamastor Ocean.

We have obtained single-crystal U-Pb ID-TIMS zircon ages of ~890-880 Ma for granite and syenite within the largest RS plutonic complexes (Sjambok River and Older Bremen complexes) and for a NE-trending felsic swarm associated with the Older Bremen complex. Frimmel et al. (2001, Jour. Geol.) reported U-Pb zircon ages of ~830 and 800 Ma for two other igneous centers (Rooiberg and Klipbokkop) near the SW limit of the RS. New single-grain zircon and baddeleyite data from the largest dike in the GDS yield dates of ~795 Ma (this study; Rioux et al., 2010, Contrib. Mineral. Petrol.). These data indicate that intraplate felsic magmatism lasted for ~90 Ma and was followed closely by emplacement of the GDS.

An initial paleomagnetic data set from the RS and parts of the GDS yielded a single high-latitude pole (74o N, 234o E, n = 36, A95 = 4.5o) and included sites giving the dates mentioned above. The large differences in crystallization ages between these units suggest that the older sites were remagnetized during emplacement of the GDS. Ongoing work on additional GDS sites from other sampling areas yields distinctly different directions, suggesting that some of the dikes were emplaced at significantly different times; additional geochronological work is in progress to resolve this issue.

2011 GSA Annual Meeting in Minneapolis (912 October 2011)
General Information for this Meeting
Session No. 148
Reconstructing Supercontinents and the Global Large Igneous Province (LIP) Record
Minneapolis Convention Center: Room 102D-F
8:00 AM-12:00 PM, Tuesday, 11 October 2011

Geological Society of America Abstracts with Programs, Vol. 43, No. 5, p. 371

© Copyright 2011 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.