Integrating Climate Change for Elementary Pre-Service Teachers: Tales from the Field

Heather R. Miller – Grand Valley State University, Geology
Pablo Llerandi-Román – Grand Valley State University - Geology
Stephen Mattox – Grand Valley State University - Geology
Chris Dobson – Grand Valley State University - Biology
Matthew Ludwig – Western Michigan University - Science Education
History of Integrated Earth/Life Science Course

• Prior 2009: required 1 lecture & 1 lab
• State mandated 2 sequence science course
• Decided on a physical science & an integrated Earth & Life science course
• Overarching theme: Global Climate Change
Course Development

- Internal grant to work on early preparation for the course
- Development of a Master Document
 - Guiding questions
 - Key objectives for each class
 - Concepts for Earth & Life science, including Nature of Science & science process skills
- Goals:
 - Develop understanding of Earth & Life science concepts
 - Teach/learn through inquiry
 - Model science teaching
 - Nature of science & science process skills in the science classroom
Curricular Model

Global Climate Change

Earth Science

Life Science

Mathematics

Physical Sciences

Nature of Science

Science Process Skills
Teaching the Course

• Two professors (one for each discipline)
 • Students move between the classes
 • When possible, two professors in same classroom
• Consistency among the professors is key
 • Grading scale & approach
 • Types of assignments
 • Objectives – list at beginning/go over at end of lesson
 • Exam layout
 • Academic freedom not in danger!
• Weekly meeting among the group
• Reflection questions, GCC in the media, GCC in the classroom
A Student’s Schedule

• An Earth Science student will for example:
 • Will stay with me for the first 3 classes, then switch to see my life science counterpart for 3 classes
 • Then for several classes will switch back & forth each class
 • Then we will teach a topic together – all students in one room, with either earth or life professor leading
 • This similar pattern continues for the rest of the semester
<table>
<thead>
<tr>
<th>Classes</th>
<th>Guiding GCC Question</th>
<th>Life Science</th>
<th>Earth Science</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 4</td>
<td>What is GCC?</td>
<td>Biogeography</td>
<td>Climate & Weather</td>
<td>BLOCK</td>
</tr>
<tr>
<td>2 & 5</td>
<td>How is climate influenced naturally?</td>
<td>Natural Selection</td>
<td>Geosphere, Hydrosphere & Atmosphere</td>
<td></td>
</tr>
<tr>
<td>3 & 6</td>
<td>How is climate influenced naturally?</td>
<td>Biodiversity</td>
<td>Geosphere, Hydrosphere & Atmosphere</td>
<td></td>
</tr>
<tr>
<td>7 & 8</td>
<td>Has GCC occurred in the past?</td>
<td>Evolution & Phylogeny</td>
<td>Geologic Materials</td>
<td>SWAP</td>
</tr>
<tr>
<td>9 & 10</td>
<td>Has GCC occurred in the past?</td>
<td>Energy Flow & Trophic Structure</td>
<td>EXAM 1</td>
<td>SWAP</td>
</tr>
<tr>
<td>11 & 12</td>
<td>What factors influenced GCC in the past?</td>
<td>Biogeochemical Cycling</td>
<td>Orbital Cycles & Carbon</td>
<td>SWAP</td>
</tr>
<tr>
<td>13 & 14</td>
<td>What factors influenced GCC in the past?</td>
<td>Inheritance & DNA Structure/Function</td>
<td>Protein Structure/Function</td>
<td>TOGETHER</td>
</tr>
<tr>
<td>15 & 17</td>
<td>Is GCC happening now?</td>
<td>Phenology & Plant/Animal Life Cycles</td>
<td>Physical Changes in Historical Time</td>
<td>BLOCK</td>
</tr>
<tr>
<td>16 & 18</td>
<td>Is GCC happening now?</td>
<td>Phenology & Plant/Animal Life Cycles</td>
<td>Physical Changes in Historical Time</td>
<td></td>
</tr>
<tr>
<td>19 & 20</td>
<td>Are humans involved in current GCC?</td>
<td>Are humans involved in current GCC?</td>
<td>Nature of Models & Energy Resources</td>
<td>TOGETHER</td>
</tr>
<tr>
<td>21 & 22</td>
<td>What are the projections being made?</td>
<td>EXAM 2</td>
<td>Changes in the Physical Earth</td>
<td>SWAP</td>
</tr>
<tr>
<td>23 & 25</td>
<td>What are the consequences of GCC?</td>
<td>Community Structure & Loss of Biodiversity</td>
<td>Sea Level, Glaciers, & Shifting Climate Zones</td>
<td>BLOCK</td>
</tr>
<tr>
<td>24 & 26</td>
<td>What are the consequences of GCC?</td>
<td>Community Structure & Loss of Biodiversity</td>
<td>Sea Level, Glaciers, & Shifting Climate Zones</td>
<td></td>
</tr>
<tr>
<td>27 & 28</td>
<td>What are the social implications? What do we do next?</td>
<td>Prioritizing Issues Related to GCC</td>
<td>Stabilization Wedges</td>
<td>TOGETHER</td>
</tr>
</tbody>
</table>
Is it working?

- Yale Project on Climate Change Communication: America’s Knowledge on Climate Change (http://environment.yale.edu/climate/files/ClimateChangeKnowledge2010.pdf)
- end of course survey about global climate change

Is global warming happening?

91% of students are confident global climate is happening compared to 63% of Americans.
100% think humans contribute with 55% thinking that there are also natural influences as well, compared to 56% of Americans thinking humans contribute & 6% thinking there is also natural influences.

100% could define a greenhouse gas compared to 66% of Americans.
Is it working?

• **Student perception**
 • Students don’t like switching between two professors with a “substitute” teacher-like effect
 • Inquiry approach - “hands-on activities were a BLAST and really got you thinking”
 • SPS - Students feel more confident with graphs & interpretation at end of course

• **Difficulties/challenges**
 • Students come into class thinking it is a “how to teach science” course & not a science content course
 • Lack of math skills, a barrier to learning
 • Complaints about how much they dislike science – predisposes students to failure
 • Teaching this course limits our exposure to majors
Lessons Learned

• Misconceptions have given us ideas for new approaches
 • Ozone layer
 • Islands
 • evolution

• Backed off the amount of content, focusing more on integration & deeper understanding
 • Realizing it is not an Earth or Life science course but an integrated course for pre-service teachers
Where do we go from here?

• One professor
 • More integration between Earth & Life sciences
 • Students see one teaching front
 • In process of moving to a one-instructor model
 • Still working together on class content & activities
• Working on developing a series of ‘naturally’ integrated units
 • major integrated themes during semester
 • Biomes-climate-weather
 • Climate-Natural influences-Plate tectonics-biogeography-biodiversity
Thank you from all of us

- Heather R. Miller – Grand Valley State University, Geology
- Pablo Llerandi-Román – Grand Valley State University - Geology
- Stephen Mattox – Grand Valley State University - Geology
- Chris Dobson – Grand Valley State University - Biology
- Matthew Ludwig – Western Michigan University - Science Education
GCC/Course concepts
Guiding questions

• What is Global Climate Change?
• How is climate influenced naturally?
• Has GCC occurred in the past?
• What factors influenced GCC in the past?
• Is GCC happening now?
• Are humans involved in current GCC?
• What are the projections being made?
• What are the consequences of GCC?
• What are the social implications?
• What do we do next?