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A. Pratt Slide (Miocene, Late Clarendonian) B. North Shore (Miocene, Late Clarendonian) C. Cambridge (Miocene, Medial Hemphilian)

D. Lisco (Pliocene, Early Blancan) E. Broadwater (Pliocene, Medial Blancan) F. Big Springs (Pliocene, Late Blancan)
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• Tooth enamel of 105 specimens from six localities in Nebraska was sampled for bulk analysis.   Preference 
was given to sampling the third molar and premolars since these teeth are among the last ones to develop, 
mineralize, and erupt in mammals (Hillson, 2005).  When necessary, these were supplemented by the 
sampling of second and first molars.  

 
• The general method for stable isotope sampling of tooth enamel followed Koch et al. (1997). 3-4 mg of 

pristine enamel powder was drilled off the tooth along a non-occlusal surface parallel to the growth axis 
using a diamond bit and a variable speed dental drill. 

 
• The powder was collected and treated with 2-3% reagent grade NaOCl for 24 hours to remove organics. 

The samples were rinsed five times with distilled water and dried. Nonstructural carbonates were removed 
by soaking in 1 M buffered acetic acid for 24 hours. This was followed by rinsing 5 times and drying at 60°C 
overnight. 

 
• Samples were reacted with phosphoric acid at 77.1° ± 1°C in a Finnigan MAT Kiel automated carbonate 

reaction device at the University of Michigan Stable Isotope Laboratory.  δ13C and δ18O values of the 
resulting CO2 were measured on a Finnigan MAT 253 triple collector isotope-ratio-monitoring mass 
spectrometer. Isotopic ratios were normalized using international standards. 

 
• Intra-lab enamel standards (LOX, from modern elephant enamel; MES-1, from fossil mammoth enamel from 

New Mexico) were used to monitor variance among batches. Mean values and variance were: δ18O = 32.07 
± .04‰ and δ13C = -5.66 ± .01‰ (Standard error, n = 29) for LOX and δ18O = 23.30 ± .07‰ and δ13C = -9.67 
± .01‰ (Standard error, n = 19) for MES-1 

Stable carbon and oxygen isotope values from mammalian taxa at fossil localities throughout Nebraska with interpreted diets 
from Part 4 corrected for diet-enamel enrichment of 14‰ and atmospheric δ13C values for each locality.  Symbols represent 
the mean value; error bars represent 95% confidence (±1.96 SE).  A, B, and C are from the Miocene.  D, E, and F are from 
the Pliocene. 
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Habitat and LocationThe expansion of C4 grasslands occurred between 6 to 8 million years ago in the North 
American Great Plains, as indicated by a marked shift to higher stable carbon isotope 
values (δ13C) in fossil mammals and soil carbonates.  Prior to this expansion, Great 
Plains floras were predominantly composed of C3 vegetation.  In response, there was a 
forced shift in diet by large mammals. To explore this problem we present a 
compilation of bulk stable carbon and oxygen (δ18O) isotope values from a variety of 
large mammals from six localities in Nebraska, ranging in age from late Miocene 
(Clarendonian) to late Pliocene (Blancan). As expected, late Miocene taxa had δ13C 
values indicating that they exclusively exploited C3 vegetation with habitats ranging 
from open forests in northern Nebraska to C3 grasslands in southwestern Nebraska.  A 
shift to higher δ13C values occurs in Pliocene camels, horses, and gomphotheres 
indicates that they were consuming some C4 vegetation.  In contrast, a Blancan 
peccary (Platygonus sp.) still consumed only C3 vegetation indicating that C3 niches 
were still present.  Through this Miocene-Pliocene transition there is an overall shift to 
lower δ18O values in tooth enamel which is consistent with the long-term decrease in 
mean annual temperature observed in the marine record.  Our results indicate marked 
change in climate and vegetation in the Great Plains from the late Miocene to the 
Pliocene.  

• The spread of C4 grasslands in the Blancan is recorded by many taxa that have switched their diet from C3 grasses 
and evolved adaptations for grazing. Late Miocene camels were mixed feeders while taxa within this group switched to 
C4 grazing in the Pliocene. The Miocene gomphothere, Serbelodon, was probably a C3 mixed feeder, while 
Stegomastodon was a C4 grazer in the Pliocene. 

• Late Miocene faunas were exclusively exploiting C3 vegetation.  Horses have the highest δ18O values in the 
Cambridge and North Shore faunas, suggesting a preference for open habitats and C3 grazing.   Camels and rhinos 
exploited a range of niches, from mixed feeding to possibly grazing.  The horse Cormohipparion appears to have been 
able to exploit both open forest and grassland environments. 

• C3 vegetation was still prevalent enough in the Blancan to support some C3 feeders. The peccary Platygonus sp. has 
the lowest mean δ13C values of both Blancan faunas, indicating that it was feeding exclusively on C3 vegetation and 
probably occupying a riparian habitat.  It may serve as good indicator of maximum vegetation density in local 
microhabitats. 

• Pratt Slide locality appears to have been a more forested environment compared to the Cambridge and North Shore 
localities in the Miocene. 

• Rhinos have consistently low δ18O values in the late Miocene faunas, suggesting water dependence, while camels 
have higher values suggesting that they relied more on food for water. The peccary Prosthennops sp., in Pratt Slide, 
has very low 18O values with extremely low variance, strongly suggesting a preference for aquatic vegetation. 

• Oxygen isotope values are significantly lower in the Blancan, which is consistent with major global cooling from the 
late Miocene to the late Pliocene, as indicated by marine proxies (e.g., Zachos et al., 2001).  
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