RADIOMETRIC DATING OF SEDIMENT FROM LAKES OHAU AND TEKAPO, NEW ZEALAND

Introduction

GNS Science aims to determine New Zealand's paleoclimatic record using sediment cores from South Island glacial lakes.

Lakes Ohau and Tekapo, located on the eastern side of the Southern Alps. have received sediment from their catchments since forming about 16,000 years ago.

Sediment cores could reveal high-resolution records of paleoclimatic fluctuations provided that fine-scale chronologies can be established.

Dating climate related events in sediment deposited in the past 100 years should facilitate dating similar events in the deeper sediment.

In a pilot experiment, the sedimentation rates were established using radioactive isotopes

- ¹³⁷Cs (half-life = 30.2 years), from atmospheric nuclear weapons testing
- ²¹⁰Pb (half-life = 22.3 years), produced by the decay of atmospheric ²²²Rn gas
- ¹⁰Be (half-life = 1.36 My), a cosmogenic isotope produced mainly in the Earth's upper atmosphere

¹⁰Be, measured by accelerator mass spectrometry, was employed as an adjunct for the ²¹⁰Pb method to:

- Correct for sedimentological variation in the unsupported ²¹⁰Pb used to obtain sediment accumulation rates
- Identify changes in sedimentation rate

Feed to lakes

Lacustrine sediment contains ²¹⁰Pb, termed excess or unsupported, that is continuously produced by atmospheric ²²²Ra gas.

- In a sediment core, excess ²¹⁰Pb decreases with depth due to radioactive decay.
- The dating method commonly relies on establishing an exponential decay curve for the excess ²¹⁰Pb but the sedimentation rate must be uniform.
- ²¹⁰Pb has a half-life of 22.3 years so the technique can only be applied to the past ~100 years.
- ²¹⁰Pb and ¹³⁷Cs are frequently analyzed and interpreted together, with ¹³⁷Cs providing some absolute tie points for the ²¹⁰Pb profile.

There is a background of ²¹⁰Pb, supported by ²²⁶Ra (via ²²²Rn) within the sediment, to deduct from the total measured ²¹⁰Pb.

Ideally, each sediment sample would be completely decomposed and the total ²¹⁰Pb and ²²⁶Ra (background), measured.

- ²¹⁰Pb activities in New Zealand sediments are low, 5-10% of continental sites
- The difference between excess and supported ²¹⁰Pb is relatively small, making ²¹⁰Pb dating difficult.
- Therefore the excess ²¹⁰Pb is extracted by acid leaching.

Tekapo

Ohau

• Six rivers

• Two rivers

Wellington

Christchurch .

Pacific

Ocean

0 200km

PACIFI

Dunedin

Two major glacial run-offs

One minor glacial run-off

Relatively uncomplicated

¹³⁷Cs, a fission product from atmospheric nuclear weapons testing, reached a concentration peak c. 1965 prior to international bans on atmospheric testing ¹³⁷Cs dating relies on establishing the stratigraphic location of the isotope's first

appearance in c. 1953 and its concentration peak c. 1965

¹³⁷Cs deposition in New Zealand rain

• Decay corrected to a common date

¹³⁷Cs distribution in Lake Ohau sediment • Similar to deposition from rainfall

- 1965 fallout maximum at 230 mm
- 1953 initial fallout at 295 mm

Overview of results

- ²¹⁰Pb and sediment solubility in 6M HCI are correlated
- Data for the 44.5 cm layer suggests that cold 6M HCI removes most of the ²¹⁰Po from surface sites of a sediment component that later fully dissolves in hot 6M HCI
- ¹⁰Be decreases towards the surface - Sedimentation rate is increasing

Overview of results

¹³⁷Cs distribution in Lake Tekapo sediment

- Spread due to delayed input from catchment
- 1964-5 fallout maximum at ~180 mm Sedimentation rate = ~4.0 mm.yr⁻¹
- 1952-1953 initial fallout at 240 mm Average rate for the 0-240 mm section = 4.2 mm.yr⁻¹

- Originally expressed in mCi.Km⁻²

 - Sedimentation rate = 5.1 mm.yr⁻¹

Objectives

- Acid leach meteoric ¹⁰Be, excess ²¹⁰Pb and a minimum of supported ²¹⁰Pb from the sediment
- Leach more strongly to obtain the supported ²¹⁰Pb profile.
- Assess the sediment solubility. (The supported ²¹⁰Pb background varies with depth and is partly dependent on the sediment solubility.)
- Introduce the use of ¹⁰Be (half-life = 1.36 My) to check if the excess ²¹⁰Pb content of the freshly depositing sediment has fluctuated, assuming that ¹⁰Be and ²¹⁰Pb are input from the Earth's atmosphere in a reasonably constant ratio

Results from acid leaching experiments where ²¹⁰Pb is estimated via its grand-daughter ²¹⁰Po Cold leaching wet or dry sediment with 6M HCl for less than 10 minutes:

- Dissolves minimal sediment
- Recovers all the excess ²¹⁰Po
- About 50% of the acid extractable supported ²¹⁰Po
- 90% of the ¹⁰Be
- Second leach: Hot 6M HCl for 60 minutes
- Dissolves 12–15% of the sediment
- Recovers the remaining ¹⁰Be

¹⁰Be trends

Separating ²¹⁰Pb_{excess} from total measured ²¹⁰Pb

- Deducting a fixed supported ²¹⁰Pb background is acceptable down to ~30 cm
- Individual backgrounds fully scaling according to the sediment solubility in 6M HCl tend to be "overcorrected"
- Deducting supported ²¹⁰Pb backgrounds part fixed and part scaled according to the sediment solubility in hot 6M HCl suits all the
- Sedimentation rates established using ¹³⁷Cs and ²¹⁰Pb are in close agreement

²¹⁰Pb_{excess}/¹⁰Be profile

- Smooth compared ²¹⁰Pb_{excess} profile
- Not purely exponential because the sedimentation rate has decreased since the hydro dam was constructed and the water level
- Sedimentation rate is low compared with 4.2 mm.yr⁻¹ estimated from the first appearance of ¹³⁷Cs in 1953 when the sedimentation rate was

Dating individual layers using ²¹⁰Pb_{excess}/¹⁰Be

GNS Science, Lower Hutt, New Zealand

GNS <u>science</u> te pū ao

Summary

Dating sediment with ²¹⁰Pb and ¹⁰Be

- Fresh sediment contains ²¹⁰Pb and ¹⁰Be input from the atmosphere
- The flux of atmospheric ²¹⁰Pb and ¹⁰Be is reasonably constant
- In an ideal core, the ¹⁰Be activity is virtually constant with depth for the past 100 years of sediment accumulation
- The decrease in ²¹⁰Pb or ²¹⁰Pb/¹⁰Be with depth, due to radioactive decay, can be used for dating sediment

Lakes Ohau and Tekapo

- The ²¹⁰Pb_{ayces}/¹⁰Be method compensates for changes in initial ²¹⁰Pb content of the sediment and changes in deposition rate
- Each layer is dated using the decrease in ²¹⁰Pb_{arrows}/¹⁰Be value with respect to the initial ratio determined from the surface sediment
- The ¹⁰Be profiles show fluctuations, which may be climate related, and have overall gradients due to changes in sedimentation rate

Future studies

- "Fill-in" samples to improve the ¹⁰Be profile for the Lake Ohau sediment core
- ¹⁰Be data from a long core may help establish the South Island climate history
- Possibly use the ¹⁰Be inventory for sediment dating

nent	
round	
ckground ording M HCl	 Generally improves fit of exponential to the data set
yr-1	 Results in outliers at 9.5 cm and 14.5 cm but dating individual layers provides a likely explanation
80	

Dating individual layers using ²¹⁰Pb_{excess}/¹⁰Be

- Initial ²¹⁰Pb_{excess}/¹⁰Be is known from surface samples
- Each layer is dated using the decrease in ²¹⁰Pb_{excess}/¹⁰Be value due to radioactive decay
- Influxes of older sediment and changes in sedimentation rate can be identified
- The low value at 9.5 cm is probably due to managing the lake for hydroelectric power generation in
- Variations in ¹⁰Be production due to 11 year solar cycles do not seriously affect the dating method

- Necessary when the sedimentation rate has changed
- Curvature is consistent with a progressive decrease ir sedimentation rate

- If the atmospheric ¹⁰Be flux is reasonably constant, the overall gradients indicate changes in sedimentation rate
- L. Ohau increased
- L. Tekapo decreased

Short-term ¹⁰Be fluctuations

- Occur every ~20 years in the L. Ohau core
- Are not due to solar cycles
- May be climate related