MICROSTRUCTURAL STUDY OF DEFORMED DIAMICTITES ALONG THE WILLARD THRUST FAULT, WITH IMPLICATIONS FOR FLUID INTERACTION ALONG A FAULT
Microstructurally, quartzite clasts have microcracks and limited crystal plastic deformation at low strain; bulged boundaries and fluid inclusions increase at higher strain. At low strain, orthogneiss clasts contain quartz grains with microcracks and fluid inclusions; feldspar grains have microcracks that concentrate alteration. With increased strain clasts have kinked micas and extensively fractured and altered feldspars. At high strain elongate quartz grains, strain shadows, and selvage seams develop. Paragneiss clasts at low strain also exhibit fluid inclusions in quartz and microcracked feldspar, but mica is more widespread. At medium strain, clasts have kinked micas, selvage seams, and fractured feldspar. At high strain, quartz ribbons, strain shadows, and selvage seams are well developed.
Deformation mechanisms vary based on mineral and clast type, strain, and position with respect to the fault. Quartz deforms by dislocation creep in quartzite clasts, but transitions from dominant deformation via microfracturing to dislocation creep in gneissic clasts with increasing strain. Feldspar microfractures throughout, but alters more extensively to micas in the footwall with increasing strain. Diffusive mass transfer is more prevalent at higher strain. Deformation was approximately isovolumetric in the footwall where quartz dissolution and precipitation were nearly balanced, whereas the hanging wall experienced net volume loss and quartz dissolution.