2011 GSA Northeastern/North-Central Joint Section Meeting

Evaluation of CO₂ Geological Storage Capacity in the Paleozoic Formations of the Ordos Basin, China

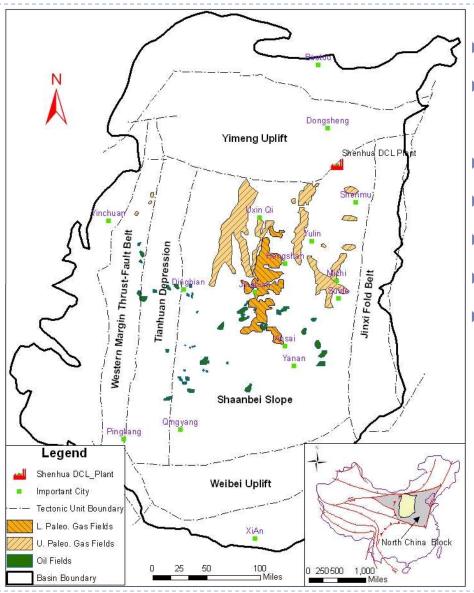
WANG, Guochang and CARR, Timothy R.

Outline

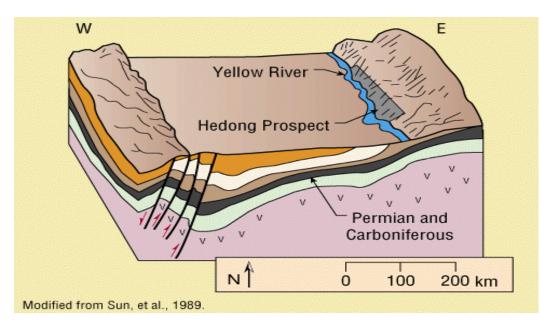
- Motivations
- The Ordos Basin Geologic Background
- ▶ 3D Geologic Modeling
- Potential Reservoirs-Caprock Assemblages
- ► CGS Capability and CO₂ Leakage Risk
- Conclusions
- Acknowledgements

Motivations

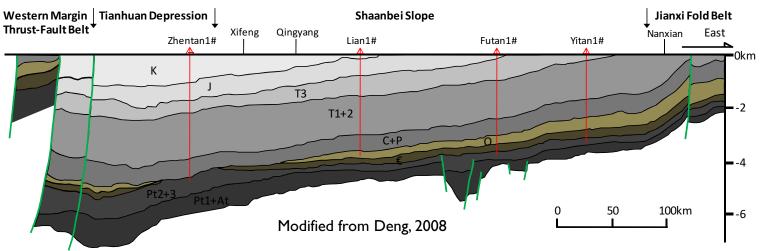
The Shenhua Group, China's biggest coal producer, is planning to launch the CCS project for its modern DCL plant which produces CO₂ 3.67Mt/yr.

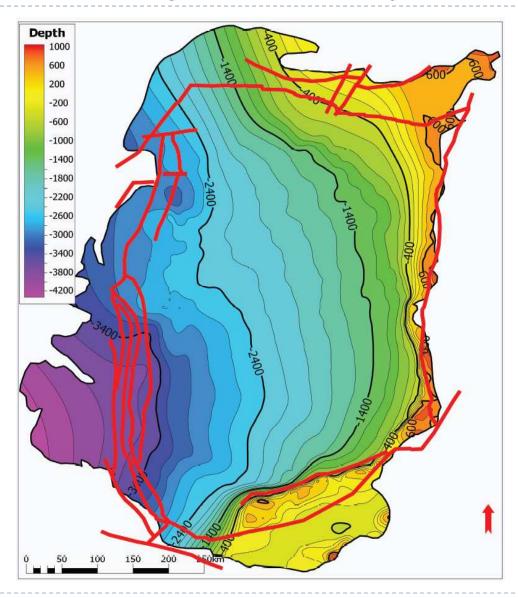


Shenhua DCL Plant in Inner Mongolia, China


Motivations

❖ In 2004, about 100Mt CO₂ emission in the Ordos Basin


In the future, more CO₂ emission in the Ordos Basin due to Coal-To-Liquid development in the Ordos Basin



- In North China Block
- Area: 370,000 km² (140,000mi²), as big as half Texas
- Thickness: 2,000~10,000m
- Proven oil reserves: 10*108metric tons
- Proven gas reserves: 1.54*10¹²m³
- Abundant of coal mining
- Six tectonic units

- A huge monocline in TianhuanDepression and Shaanbei Slop
- Most of the faults in WesternMargin Thrust-Fault Belt and JinxiBelt
- Dip angle less than 1°
- Deeping to west

Carboniferous Top
Structure Map with
Major Faults

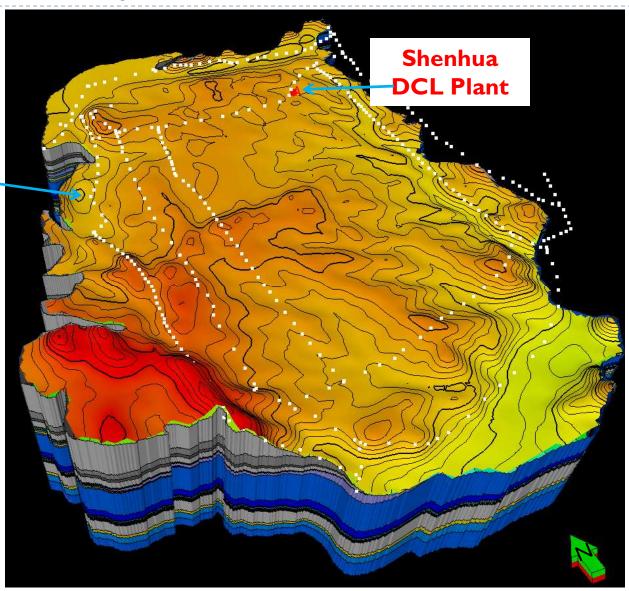
Geologic Time					Thickness	Lithala		
-	Era Period		Epoch	Group	(m)	Lithology		
Cenozo		Neogene			10-200			
		Paleogene			0-10			
		C		Luohe	0.770			
		Cretaceous	Lower	Yijun	0-770			
				Anding	100-400			
١,	٠		Middle	Zhiluo	100-450			
	1070	Jurassic	Lower	Yanan	250-350			
0	אותא		Lower	Fuxin	0-120			
*	_	Triassic	Upper	Yanchang	400-1200			
			Middle	Zhifang	150-850			
			Lower	Heshanggou	40-100			
L				Liujiagou	100-820			
	Upper	Permian	Upper	Shiqianfeng	250-280			
				Shangshihezi	140-160			
			Lauran	Xiashizhezi	120-215			
			Lower	Shanxi	80-110	·		
U		Carbonifer	Upper	Taiyuan	25-45	· · · · · · · ·		
Paleozoic		ous	Middle	Benxi	30-65	AIAI		
ale	Lower	Ordovician	Lower	Majiagou	0-1000			
Н				Liangjiashan	17-150			
				Yeli	13-150			
			Upper	Feng-Chang-Gu	34-330			
			Middle	Zhang-Xu-Mao	55-1000			
		Cambrian	Lower	Mantou	19-62			
Pro	ter	ozoic-Arche	an					

Ordos Basin Hydrodynamic Systems Lithology of Reservoir--Caprock

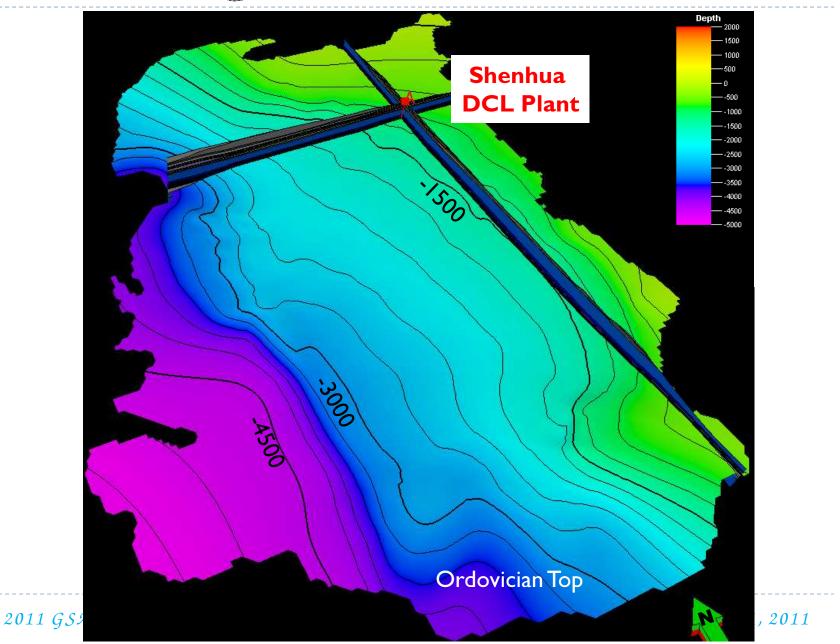
Mesozoic Oil System

Sandstone--Shale

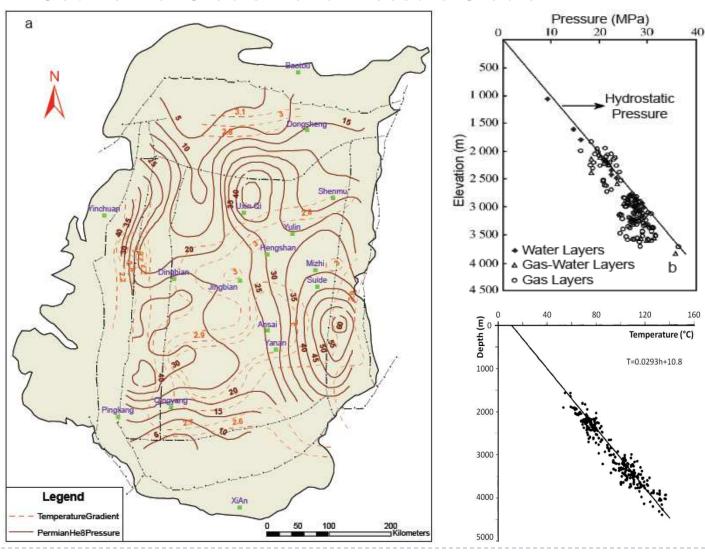
Upper Paleozoic
Gas System

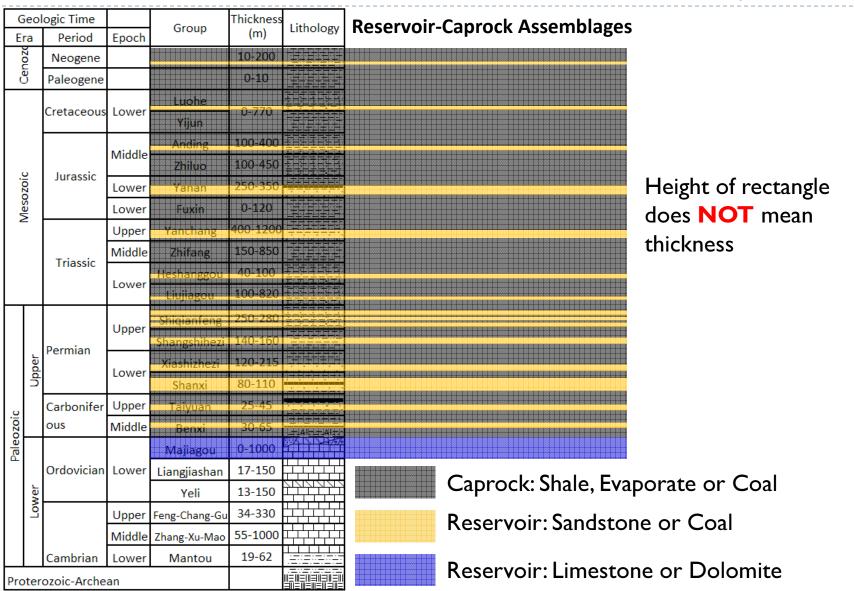

Sandstone/Coal--Shale

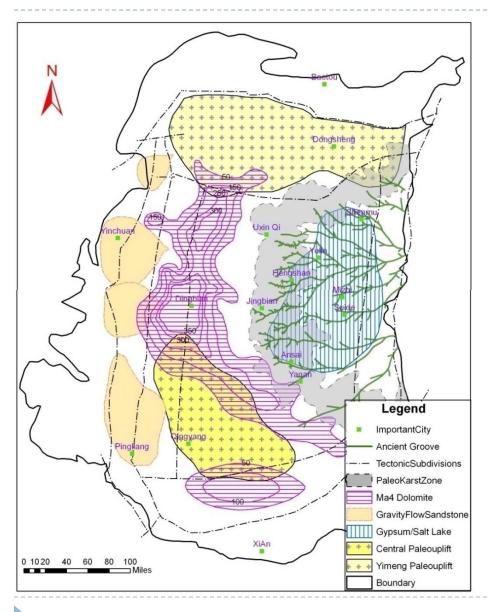
Lower Paleozoic
Gas System


Carbonate--Evaporate/Bauxite

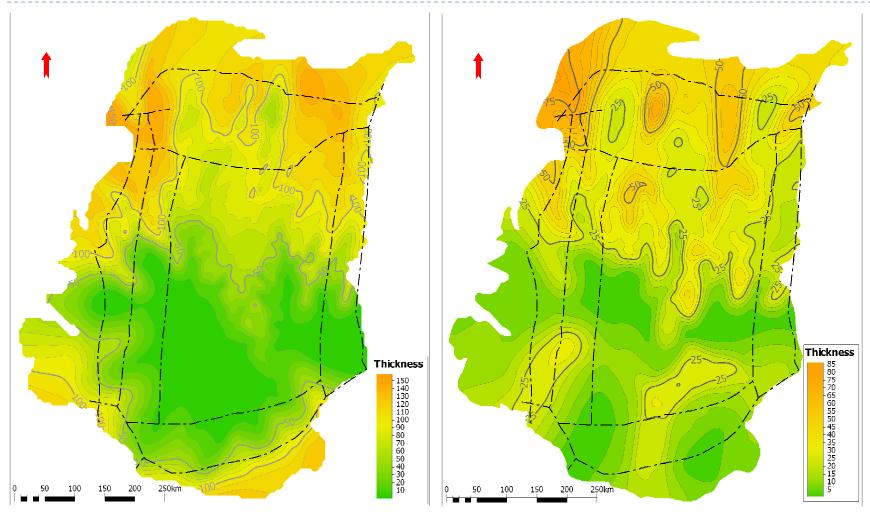
3D Geologic Model


Ground Surface

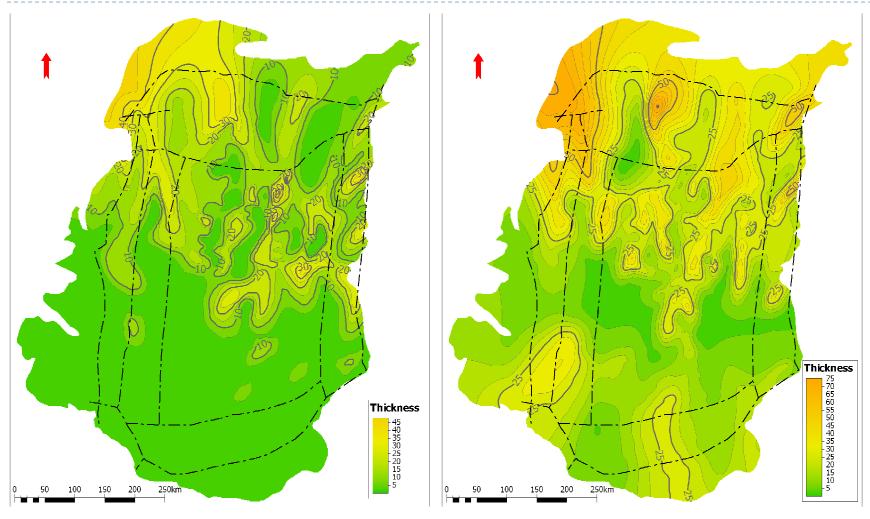

3D Geologic Model



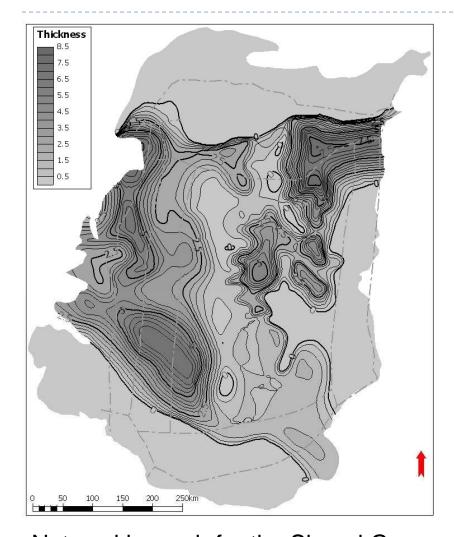
Potential Reservoir-Caprock System



Period	Formation		Thickness	Lithology	Porosity	Permeability	Reservoir Type	
· criou	Group	Group Member		Littiology	(%) ²	(mD) ²		
Jurassic		Yan1					OILEL LI	
	Yan'an	Yan2		Shaly sandstone	1-20	30-120	Oil Fields &	
	Yan an	Yan3					Saline Aquifers	
		Yan4						
Triassic		Ch2		Shaly sandstone	1-17		Oil Fields	
	Yanchang	Ch3				5-100	Oil Fleids	
Tria		Ch5					Saline Aquifers	
·		Ch10					Sume Aquirers	
		Qian1	0-39					
		Qian2	0-44				Saline Aquifer	
	Shiqianfeng	Qian3	0-43	Sandstone	<u>5-16.7</u> 12.5	<u>2-411</u> 31.37	Saline Aquiler	
	Sinqiameng	Qian4	0-42	Sandstone				
		Qian5	0-36				Shenmu Gas Field	
		Qiano	0-30				& Saline Aquifer	
	Xiashihezi	He5	0-5		5.1-14.1 10.1	0.37-5.13 0.59		
Permian		He6	0-10	Sandstone	3.5-16.4 11.7	0.08-20.61 1.6	Saline Aquifer	
Pe		He7	0-10	Sanustone	2-18.9 7.3	0.01-15.85 0.69		
		He8	0-87		1.0-13.4 8.5	0.01-16.29 3.45	Sulige, Daniudi, Yulin, Mizhi, Zizhou,	
	Shanxi	Shan1	0-76	Sandstone	1.1-12.4 6.4	0.01-22.71 0.88	Wushen Gas Fields	
		Shan2	0-48	Sandstone	0.9-14.5 7.4	0.01-12.27 2.55	Saline Aquifer	
			0-20	Coal			Coal Seams	
sno	Taiyuan	Tai1	0-15	Candatana	2.7-12.3 7.9	0.01-3.1 1.50	Daniudi Gas Field &	
Carboniferous		Tai2	0-10	Sandstone	0.8-11.4 8.0	0.01-2.8 0.74	& Saline Aquifer	
arb			0-8	Coal			Cool Cooms	
Ü	Benxi		0-5	Coal			Coal Seams	
Ordovician		Ma5	45-72		1-19 6.2	<u>1-300</u> 5	Jingbian Gas Field & Saline Aquifer	
	Majiagou	Ma4	32-432	Dolomite	2-13 3.7	0.01-192 7.8	Saline Aquifer	


- Widely Distributed Reservoirs
- Thick Sandstone and Carbonate
- Low Porosity
- Low Permeability
- High Heterogeneity

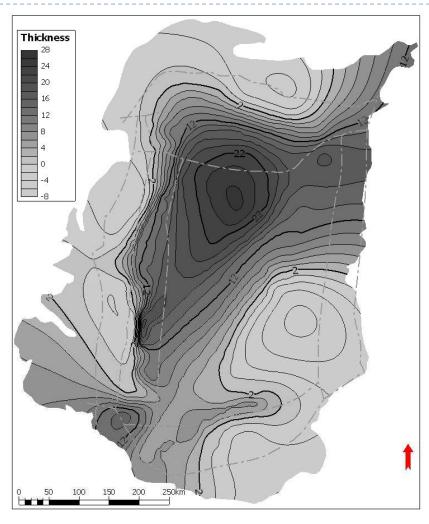
- Potential Reservoirs in Ordovician
 - Karst Reservoir
 - Dolomite in Tianhuan Depression
 - Sandstone in Western Margin


Shiqianfeng Sandstone Isopach in Permian He8 Sandstone Isopach in Permian Unit in Meter

Shan1 Sandstone Isopach in Permian

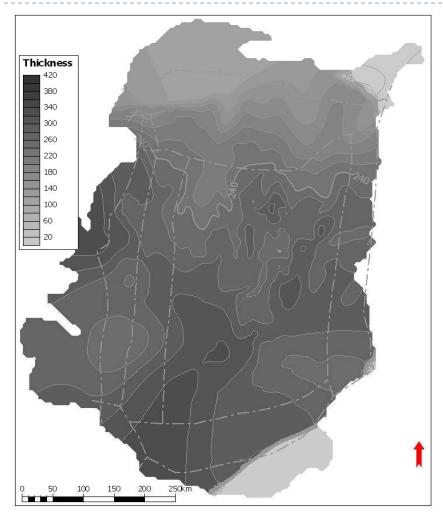
Shan2 Sandstone Isopach in Permian

Unit in Meter

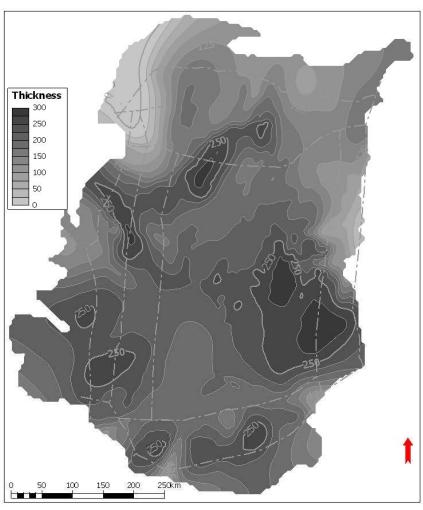


Thickness 17 15 13

Net coal isopach for the Shanxi Group of Permian


Unit in Meter

Net coal isopach for the Benxi and Taiyuan Group of Carboniferous


Net coal isopach for the Yan'an Group of Triassic

Potential Caprocks

Shale isopach of Shangshihezi Group of Permian

Unit in Meter

Net shale isopach of Shiqianfeng Group of Permian

CGS Capacity

Oil Fields CCS Capacity

Oil Fields		Area	Average	Average	Averate	Average	Average	CO2		M _{CO2}
		Aica	Depth	Thickness	Temperature	Pressure	Porosity	Porosity Density Ph		IVICO2
		km²	m	m	С	MPa	%	Kg/m ³		Gt
ing	Wuqi	113.2	1415	5.8	51.0	13.9	14.65	658.5	supercritical	0.002
ngd	Youfangzhuang	33.6	1839	5.7	63.3	18.0	17.5	662.81	supercritical	0.001
Chai	Ansai	737.1	1179	10.8	44.2	11.6	13.3	650.8	supercritical	0.021
na (Anwu	49.9	1740	5.9	60.5	17.1	16.5	663.05	supercritical	0.001
PetroChina Changqing	Hujianshan	53.3	1694	5.1	59.1	16.6	16.5	661.53	supercritical	0.001
tro	Jingan	487.1	1445	9.2	51.9	14.2	14.5	659.02	supercritical	0.013
Pe	Suijing	32.3	1070		41.0	10.5		644.86	supercritical	#
	Ganguyi	170.8	477	13.9	23.8	4.7	9.51	120.15	vapor	*
	Panlong	21.4								#
	Jianyucha	51.5	600	15.0	27.4	5.9	14.9	173.52	vapor	*
<u></u>	Qinghuaji	108.9	200	8.7	15.8	2.0	14	41.667	Vapor	*
har	Yaodian	109.2	555	15.0	26.1	5.4	9.02	148.38	Vapor	*
Yanchang	Zibei	100.5	435	6.5	22.6	4.3	9.1	105.91	Vapor	*
	Fengfuchuan	41.1	422	7.1	22.2	4.1	12.4	99.064	Vapor	*
	Zichang	118.0	375	16.8	20.9	3.7	10.49	86.607	Vapor	*
	Chuankou	146.7	573	13.6	26.6	5.6	7.1	157.91	Vapor	*
	Yanchang	215.5	490	16.6	24.2	4.8	7.6	123.78	Vapor	*
The Ordos Basin										0.038

CGS Capacity

Gas Fields CCS Capacity

Gas Fields	Sulige	Daniudi	Jingbian	Wushen	Yulin	Zizhou	Mizhi ¹	Shenmu	The Ordos Basin
OGIP (10 ⁸ m ³)	5336.5	3076.9	2870.8	1451.7	1132.8	902.1	358.5	267.4	15396.7
Area (km²)	4102.8	601.8	3665.0	689.5	1014.7	1194.7	478.30	310.2	
Pressure (MPa)	29.0	24.2	31.0	18.2	27.3	23.7	23.2	11.1	
Temperature (°C)	100.0	83.6	105.0	64.5	86.8	77.4	77.1	55.0	
ρ_{CO2} (Kg/m ³)	649.2	655.4	653.4	658.0	685.2	680.1	674.3	419.7	
Sg (%) ²	75.0	75.0	77.0	75.0	75.0	72.7	75.0	60.0	
Rg (%) ³	65.0	65.0	65.0	65.0	65.0	65.0	65.0	65.0	
Rw (%) ³	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	
M _{co2} (Gt)	1.02	0.68	0.52	0.41	0.23	0.21	0	0.08	3.16

Methods

$$M_{CO_2} = \rho A h_n \emptyset_e S_g \left[1 - \left(1 - R_g \right) \frac{P_i T_f Z_f}{P_f T_i Z_i} + \left(\frac{1}{S_g} - 1 \right) R_w \right]$$

$$M_{CO_2} = \rho O G I P \frac{P_s T_i Z_i}{P_i T_s Z_s} \left[1 - \left(1 - R_g \right) \frac{P_i T_f Z_f}{P_f T_i Z_i} + \left(\frac{1}{S_g} - 1 \right) R_w \right]$$

CGS Capacity

Saline Aquifers

➤ Shiqianfeng: 22.3Gt

≻He8: 5.2Gt

➤ Shan1: 3.7Gt

➤ Ma4: 3.1Gt

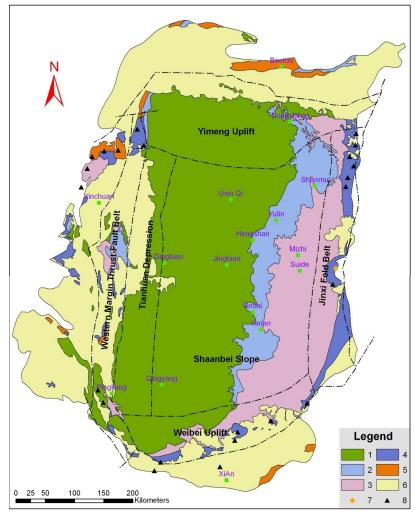
➤ Shan2: 2.0Gt

$$M_{co2} = Ah_n Ø_e \rho_{co2} E$$

E=1%; CO2 Density=650kg/m3

Coal Beds

Totally 660Mt CO₂ with producing CBM


CO₂ Leaking Risk

Geologic factors

- Caprock sealing ability
 - Lithology
 - Thickness
 - Distribution
- Faults
 - Open or sealed

Engineering factors

- Abundant of Oil and Gas Industry Drilling
 - Over 1,000 wells through Ordovician
 - Over 10,000 wells through Triassic
- Wells with casing corrosion
 - ▶ 10% due to CO₂ and H₂S

1: Cretaceous; 2: Jurassic; 3: Triassic; 4: Paleozoic; 5:Proterozoic/Archaeozoic; 6: Cenozoic; 7: Permian Outcrop; 8: Shiqianfeng Outcrop

Conclusions

- Multiple potential reservoir-caprock assemblages
- Huge CGS capacity in saline aquifers
- Large CGS capacity in gas fields, but not available now for CGS
- Oil fields are possible to launch CO₂-EOR, but not good for
 CGS
- Low porosity and permeability, low injection rate unless stimulation or horizontal well
- ► Casing corrosion wells as CO₂ leaking pathway

Acknowledgements

Thanks! Any question?

w.guochang@gmail.com