Northeastern (46th Annual) and North-Central (45th Annual) Joint Meeting (20–22 March 2011)

Paper No. 1
Presentation Time: 1:40 PM

FUNCTIONAL MORPHOLOGY OF ANUROGNATHID PTEROSAURS


HABIB, Michael B., Cell and Neurobiology, University of Southern California, 1333 San Pablo Street, Bishop 403, Los Angeles, CA 90089, biologyinmotion@gmail.com

Anurognathid fossils include several exceptionally well-preserved specimens, some of which include extensive soft tissue preservation. This exceptional amount of morphological information makes anurognathids prime candidates for functional biomechanical analysis. Furthermore, anurognathids displayed a suite of unusual characteristics that make them of particular interest for functional study. These traits included extensive pycnofiber coverings, fringed wing margins, shortened distal wings, shortened faces, and enlarged orbits. Prior authors have suggested that anurognathids were adapted to catching small insects on the wing. I present a quantitative analysis that supports this general behavioral inference, and provides details regarding probable anurognathid locomotion. Results indicate that anurognathids were exceptionally maneuverable animals.

Bone strength analysis in Anurognathus ammoni reveals that each proximal wing was capable of supporting nearly 22 body weights of force. The wing spar of A. ammoni was substantially stronger in bending than that of an average bird of the same size (residual of 0.72). The calculated relative bone strength overlaps significantly with that of living birds that capture prey on the wing (p<0.93) but differs significantly from all other avian morphogroups (p<0.04). Overall humeral robustness is similar between A. ammoni and megadermatid bats.

Anurognathid launch appears to have been particularly rapid and steep. Once airborne, anurognathid pterosaurs could likely generate high lift coefficients. Leading edge structure in Jeholopterus suggests that anurognathids were capable of generating a leading edge vortex (LEV) as observed in some living bats and swifts. Analysis of flapping efficiency suggests that the expansion of the proximal wing, coupled with reduction of the distal wing elements, would have increased flapping power at the cost of increased drag. The proportions of the wing and details of the shoulder may be indicative of the ability to hover for brief intervals; power analysis also supports this conclusion. These results are consistent with reconstructions of anurognathids as highly maneuverable flyers, preferentially foraging in cluttered habitats on small aerial prey.