

We Put Science To Work

Detoxification of Outfall Water Using Natural Organic Matter

Margaret Millings, Nancy Halverson, Brian Looney, Ralph Nichols, Jay Noonkester, William Payne

March 25, 2011

Southeastern Meeting, GSA

Wilmington, NC

General Location

- Upper Coastal Plain
- Rainfall ~ 45 to 50 in/yr
- 5 major streams that feed into the Savannah River

Problem: Copper in H-12 Outfall

GOAL: Protect ecosystem in receiving streams from chronic impacts

<u>PROPOSED REGULATORY APPROACH</u>: Reduce NPDES permit limit for copper concentration from 25 μ g/L to 6 μ g/L

Multiple & Variable Sources

4

Traditional Technology Approach

• Water treatment – e.g., metals removal using ion exchange, flocculation, or innovative methods such as constructed wetland, peat bed discharges to outfall

(various sources; e.g., facilities/basins) Traditional **Remediation System** for removal of copper (designed to treat all or most outfall water) secondary waste outfall (copper below AWQC)

Peat Bed (identified as promising "traditional" approach)

- Vertical flow
- Natural ion exchange
- 11 acres
- \$9M \$12M
- Waste generation

Low target concentrations and variable conditions challenge the viability of traditional treatment technologies.

Thinking Differently

Traditional Approach

 Construct treatment system to reduce copper to acceptable levels

Alternative Approach

- Objective Protect ecosystem...
- Can objective be met differently?
 - Prevent copper toxicity (e.g., prevent from sorbing to gill tissue)
- Detoxify copper (rather than remove)
 - Make copper unavailable for biological uptake

Calculating AWQC for Cu

Past/Traditional method

- Water hardness calculation
- Water effects ratio (WER) tests

EPA's Biotic Ligand Model (BLM)

- Metal bioavailability model
- Recently developed for copper (EPA, 2007)
- Uses receiving water chemistry to develop site specific AWQC

Downstream of H-12 Outfall

Biotic Ligand Model

Inputs

- Temperature
- pH
- Alkalinity
- DOC
 - Humic acid content
- Ca+2, Mg+2, Na+, and K+
- SO4⁻², and Cl⁻

Outputs

- Copper speciation
- Site-specific criteria

Change in allowable copper with "no" biota impact

Primary DOC Amendments Tested

- Used in agriculture/soil conditioners
- Humates (humic acid)
 - Extracted from natural materials
 - OMRI certified
 - Available as dry flake or as liquid
- Lignosulfonate
 - Byproduct of pulp and paper processing

Lab Tests with Different DOC Amendments

- Used Cu electrode (ISE) to measure free (uncomplexed) Cu
- Cu electrode = surrogate for ecological receptors (e.g., gill tissue/ "biotic ligands")

Cu concentration (low) & ISA solution

Process Control Equation

DOC System

- 2 double-walled 5,500 gal storage tanks with recirculation pumps
- pH meters, flow meters, PLC for addition of amendment
- Tanker to deliver humate stock solution

137159

22 00

Metering Pumps Process Control Instrumentation

End Results

- Lab results confirmed adding moderate amounts of DOC would reduce Cu toxicity in outfall by making it less bioavailable.
 - < 22 mg/L DOC renders 25 µg/L copper non-toxic at all outfall pH values > 5.9
 - Higher pH requires less DOC
- Meets NPDES objective even with Cu >> 6 µg/L in outfall.
 Revised final permit to reflect detoxification.
- DOC Addition System online in June 2009.

