Development of an Environmental Degradation Index for Potential Hazardous Material Releases using Berkeley, Charleston, and Dorchester Counties, South Carolina

Kathleen Clancy

Dr. Norman S. Levine

Charlie Kaufman

Introduction

- Hazardous materials found throughout our developed infrastructure
- Natural hazards, accidents, and incidents can release these contaminants
- Need to know how contaminants will:
 - -Disperse through environment
 - Affect environment
 - Humans and society
 - Natural environment and biota

Significance

- All previous work of this type has been done AFTER a release has occurred
 - This study is taking a proactive approach to management of hazards
- No expert based index of environmental degradation
 Comparative Vulnerability of U.S. Counties Based on the Social Vulnerability Index (SoVI)
 - Human health
 - Society
 - Cutter 2003

Study Area

Project Basics

- This project is built off of a BCD COG funded study
 - BCD COG study is designed to look at the potential impacts of hazardous material releases on human societies and infrastructures
- Base information and models that have been created for the BCD COG study are being adapted for this project

Objectives

- Can we quantify the potential effects of hazardous material releases on the natural environment?
- The answer involves 4 objectives:
 - Identification of hazardous materials within the study region
 - Modeling of hazardous material release impact footprints
 - Develop expert opinion based index of "chemo-environmental" risk due to hazardous material releases
 - Design first responder/land manager informational materials

Hazmat ICER

 <u>Haz</u>ardous <u>Materials</u> Index of <u>Chemo-</u> <u>Environmental</u> <u>R</u>isk

-Scaled Index: 1 = low to 5 = high

- Made up of multiple Risk Potentials (RPs)
 - -Environmental
 - -Hydrologic
 - -Biotic
 - -Conservation Lands
 - -Chemical

- Based on Urban vs. Non-Urban Area
- Urban
 - -Impervious Surface
 - -Population
- Non-Urban
 - -Water
 - Lakes and Rivers/Streams
 - -Vegetated
 - -Barren

Environmental RP

Environmental RP

Environmental RP

• Is the chemical reactive with or soluble in water?

-No = 1

- Floral and Faunal
- Floral
 - -Herbicide
 - -Fungicide
- Faunal
 - -Health Effects
 - -Species Richness
 - Threatened and Endangered
 - Do not have this data yet, but in process of acquisition

- Health Effects for:
 - -Mammals
 - -Birds
 - -Reptiles
 - -Amphibians
 - -Fish
 - -Insects
- Broken down into categories of 0, 3, or 5

- Species Richness is the number of species in a given area
 - -Collected as part of the SC GAP data, based on suitable habitat
 - -Values range from 21 to 218 within the study area

- Transport/Mobility
- Quantity of chemicals on site
- Number of chemicals on site
- NFPA Reactivity/Instability
- NFPA Flammability

- Transport/Mobility
- Quantity of chemicals on site
- Number of chemicals on site
- NFPA Reactivity/Instability
- NFPA Flammability

- Data that is currently unavailable
 - Determined through:
 - Permits
 - Uses

- Transport/Mobility
- Quantity of chemicals on site
- Number of chemicals on site
- NFPA Reactivity/Instability
- NFPA Flammability

- Transport/Mobility
- Quantity of chemicals on site
- Number of chemicals on site
- NFPA Reactivity/Instability
- NFPA Flammability
 - NFPA 0 = 0
 - NFPA 1 = 2
 - NFPA 2 = 3
 - NFPA 3 = 4
 - NFPA 4 = 5

Index Use

- Data sheets are being created for BCD COG for use by:
 - -Land and resource managers
 - -First responders
 - -Remediators
- Hazmat ICER value and affected areas will be included on these data sheets

Example Use – BellSouth 91759

Incident Date:	Date: Chemicals on Site		Blue	Red	Yellow	White	
	LEAD	7439-92-1	1	0	0		
Responder:	SULFURIC ACID	7664-93-9	3	0	2	Reactive with Water, Do Not Use Water	
0.00							
					Į		
					1		
					[]		

Notes:

BellSouth - 91759

Chemical	Environ RP	Hydro RP	Biotic RP	Conserv Lands RP	Chemical RP	Chemical Index Value	Hazmat ICER Value
Lead	3	1	2	1	1	2	2
Sulfuric acid	3	5	5	1	2	3	

- This example done with equal averaging of the various factors
 - -Within RPs
 - To get Hazmat ICER Value

Index Improvements

- Rankings/weightings will be assigned through consultation with experts in academia, industry, and government.
- Missing data
 - -Chemical quantities
 - Threatened and Endangered Species
- Creation of tool within ArcGIS to automate index process

Methodology - Validation

- Index will be validated:
 - Past, well described spills where environmental impact studies were performed after the event will be used
 - Information on the contaminants involved and area of release will be input into the rubrics and the index determined for comparison to actual environmental impacts
- Once validated, the index can be used nationally in different areas other than the tri-county area

Project Outcomes

• Nationally transferable index and tool

- Creation of effective communication materials for first responders, land managers, other users
 - -Data sheets
 - Numerical scale of potential environmental degradation

Acknowledgements

Thesis Advisor: Dr. Norm Levine

Thesis Committee: Dr. Eric Anderson Dr. Andrew Felts Dr. Vijay Vulava

Funding: SCEMD Grant

Charlie Kaufman

COLLEGE of CHARLESTON

https://sites.google.com/site/kclancythesis/

Questions?

