Modeling Instruction for High School Earth Science

Stephen R. Colbert Wake Early College of Health & Sciences

> **D. Howard Lineberger** Durham Academy Upper School

With assistance from: The Modeling Instruction Program Arizona State University

American Modeling Teachers Association

The Science House & Math-Science Partnership North Carolina State University

Objectives

- Discuss traditional instruction
 - Generalizations
- Describe modeling instruction
 - Characteristics
- Provide examples from Earth Science
 - Specifics
- Request information
 - Big ideas
 - Paradigm activities.

The Problem

• Traditional science instruction remains highly transmissionist

Presumes knowledge
is distributed to students.

Teaching by Telling

- Ineffective mode for most students
 - Students often miss the point
 - Concepts do not connect to prior knowledge
 - Watching teacher solve problems does not improve problem-solving skills of students.

Mismatched Models

- Teachers operate from mental model that approximates scientific model
- Students operate from mental model based on their experiences
 - Students don't have same schema associated with concepts.

A Private Universe

• We go through life collecting memories, and organizing them into mental models, or schema.

 Our memory depends on connections; new inputs which do not fit in an existing schema tend to be "forgotten."

Constructivist Theory

It takes a very discrepant phenomenon to motivate a change in existing schemata.

We come to understand the structure and behavior of real objects only by constructing models.

A scientific model is a conception of how the world works, consistent with observation.

Science and Models

- Scientists construct and use *shared* models to describe, explain, predict and control physical systems
- A small set of basic models form the content core for the sciences
- Models are the basic unit of knowledge.

Students and Models

- Students work from their existing mental models
- By making the process explicit, we help students move from:
 - A private, inconsistently applied model based on miscellaneous experiences
 TO
 - A shared, rigorous model with explicit experimental support.

Students are required to explicitly describe the relationships between modes of representation

Multiple Models - Example

Q#1 What is the mass of a 25.0 cm³ of Substance B that has a density =8.53 g/ cm³)?

Solution: density = mass / volume

Rearrange: mass = density x volume

Q2: Which substance would occupy a larger volume:

100 g of Substance B or 100 g of Substance A ?

Explain your choice.

Q3: Explain using particle diagrams how Substances A and B differ in density.

Q4: What is the thickness of a sheet of regular aluminum foil?

How many aluminum atoms are represented by that thickness?

Instructional Practices

constructivist vs transmissionist cooperative inquiry vs lecture/demonstration student-centered vs teacher-centered active engagement vs passive reception student activity vs teacher demo student articulation vs teacher presentation lab-based vs textbook-based.

1st - Model Development

- Students in Cooperative Groups
 - Design and perform experiments
 - Use computers and probeware to collect and analyze data
 - Formulate functional relationships between variables
 - Evaluate "fit" to data.

Paradigm lab providing direct, shared experience with the phenomena to be modeled.

1st - Model Development

- Post-lab Analysis
 - Whiteboard presentation of student findings
 - Multiple representations
 - Diagrammatic
 - Graphical
 - Algebraic
 - Justify conclusions.

Preparing whiteboard to formulate functional relationships.

= ause the filt in Southern hernisphere is opposite from the Northern hemisphere. Note: Places that are closest to the equator don't follow . the season pattern because the sun is shinning directly at them. Also the filt of the earth is 2312 Earth winter

Presenting whiteboards to articulate concepts and construct models.

2nd - Model Deployment

- Post-lab Extension teacher:
 - Helps students makes sense of model
 - Elucidates details of the model
 - Relates common features of various representations
 - Scaffolds students in constructing mental model of concept.

2nd - Model Deployment

- Deployment Activities students:
 - Apply model to variety of related situations
 - Present solutions to class
 - Articulate their understanding
 - Question other student solutions
 - Validate their mental models.

Why It Works

- Interactive engagement
- Student discourse & articulation
- Cognitive scaffolding
- Dynamic differentiation
- Multiple representational tools
- Consensus-building
- Explicit hierarchal organization of ideas and concepts into models.

What Is Needed

- Describe "Big Ideas" in Earth Science
- Identify foundational models
- Develop curriculum sequence
- Develop paradigm activities
- Develop deployment activities.

Foundational Models in Earth Science

Modeling Objectives

- Improve quality of scientific discourse
- Deepen student understanding
- Get students to see models everywhere
- Develop fluency in conceptual and mathematical modeling
- Create autonomous scientific thinkers.

Additional Resources

Arizona State University Modeling website <u>http://modeling.asu.edu/</u> American Modeling Teachers Association <u>http://www.modelingteachers.org</u>

scolbert@wcpss.net

howard.lineberger@da.org