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Riparian Hot Spot for NO3
- 
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Biogeochemical and transport processes 
• Anaerobic condition, High OM and NO3

- 

---controlled by water table, soil and vegetation 
types, and nutrient loads, etc 

• Large water fluxes (thus nutrient fluxes) 
---determined by topography and hydrogeology 

it is challenging to assess buffering capacity 
across varying systems 

 
McClain et al., 2003; Vidon et al.,2010 

 



Riparian zones display wide variation 
in their buffering capacity 
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Hydrological flow pathways across the upland-riparian continuum (from Gold et al., 
2001) 



A unifying conceptual model 
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• helpful in watershed 
management 

• qualitative only 

Vidon and Hill, 2006 



A scaling index, Damkohler number, for 
riparian buffering capacity 
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• Quantitative 
• But the index is not 

easy to measure 
• Limited application to 

real-world watershed 
management 

Ocampo et al., 2006 



Need a quantitative scaling model with 
easily measurable characteristics 
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• a simple yet robust scaling relationship to quantify 
riparian buffering capacity 

• Field comparative studies at multiple sites are 
expensive and impractical. 

• Numerical experiments using computer models 
are cheap and feasible. 



2D Riparian Model 
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numerical experiments were conducted to examine 
the effects of varying physical and biogeochemical 
conditions on N retention in riparian zones.  
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Model Testing 
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Field observation • Simulation results 
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Buckingham’s pi theorem 
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To generate dimensionless groups for total NO3
- 

removal rate, M, including the following steps:  
(1) selecting the minimum number of sensitive 

variables that describe M,  
(2) generating dimensionless groups of the 

controlling variables, and  
(3) using the numerical experiment data to 

determine a power law scaling relationship for M.  

 



Table. Dimensional Analysis variables.  
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Variable Description Dimensions 
K Hydraulic conductivity LT-1 

H Aquifer thickness L 
WT Water table depth L 

i Hydraulic gradient - 
Alpha Dispersivity L 
DOC DOC relative concentration - 
NO3

- NO3
- relative concentration - 

u Reaction rate ML-3T-1 

M Total mass removal rate per 
unit length of river 

ML-1T-1 

M= f (K,WT,H,I,alpha,DOC,NO3
-,u) 



Monte Carlo Simulation Results 
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Identify dimensionless groups 
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• There are three dimensions and nine environmental 
variables were included, which resulted in 9-3=6 
possible dimensionless groups.  

𝑀
𝑊𝑊2𝑢 = (

𝐻
𝑊𝑊)𝑎(

𝛼
𝑊𝑊)𝑏(𝑖)𝑐(𝐷𝐷𝐷)𝑑(𝑁𝑁3−)𝑒 

The exponents a, b, c, d, e, and f were determined from multiple 
regression between the individual dimensionless group and the 
dimensionless mass removal rate (M/WT2u).  

 



Correlation between M/(wt2u) and the 
dimensionless groups 
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Correlations between the dimensionless mass removal M/(wt2u), and the dimensionless 
groups. The scaling coefficients a, b, c, d, and e are the slope of the individual plots.  
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The final scaling equation: 
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The resulting scaling 
relationship of the 
total mass removal 
rate from dimensional 
analysis.  

 

R2=0.91029

𝑀 = −2.1 × 𝑊𝑊2𝑢 × (
𝐻
𝑊𝑊

)0.88(
𝛼
𝑊𝑊

)−0.57(𝑖)0.42(𝐷𝐷𝐷)0.31(𝑁𝑁3−)1.65 

𝑀
𝑊𝑊2𝑢

= −2.1(
𝐻
𝑊𝑊

)0.88(
𝛼
𝑊𝑊

)−0.57(𝑖)0.42(𝐷𝐷𝐷)0.31(𝑁𝑁3−)1.65 



Future work: A landscape index for 
watershed modeling 
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Solute 
removal 

rate  

WT depth 
(DEM/SSURGO) 

Soil type 
(SSURGO) 

Topographic 
gradient 
(DEM) 

Aquifer 
thickness 

Dosskey et al_2006 

𝑀 = −2.1 × 𝑊𝑊2𝑢 × (
𝐻
𝑊𝑊

)0.88(
𝛼
𝑊𝑊

)−0.57(𝑖)0.42(𝐷𝐷𝐷)0.31(𝑁𝑁3−)1.65 



Future work: 
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Need more testing of the scaling equation against field 
observations with varying landscape settings. 


	Scaling riparian buffer capacity of nitrogen: a synthesis of numerical experiments�
	Riparian Hot Spot for NO3-
	Riparian zones display wide variation in their buffering capacity
	A unifying conceptual model
	A scaling index, Damkohler number, for riparian buffering capacity�
	Need a quantitative scaling model with easily measurable characteristics
	2D Riparian Model
	Model Testing
	Buckingham’s pi theorem
	Table. Dimensional Analysis variables. �
	Monte Carlo Simulation Results
	Identify dimensionless groups
	Correlation between M/(wt2u) and the dimensionless groups
	The final scaling equation:�
	Future work: A landscape index for watershed modeling
	Future work:

