Evolution of a shallow hydrothermal system in the Sierra Nevada batholith: records from a zoned,
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present field, geochronologic, compositional, and oxygen isotope analyses, showing that the e ~

voluminous skarns exposed at Empire Mountain are a newly recognized low-06%0 locality, with
both the pluton and skarn forming minerals recording continuous infiltration of surface-derived
water throughout the evolution of the hydrothermal system. Fluid flow in the in the Empire
Mountain hydrothermal system provides critical insight into the style of shallow decarbonation in
convergent margin arcs.
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i 77 - Sample 2: Beige-Red Transition Sample 2A: Red-dominated, earl Single grain SIMS transects reveal:
i e + / The Sierra Nevada batholith contains P — J : o . o | i S y; - Single crystal zonation records changing
| & o \// p / 27 numerous roof pendants of Paleozoic to T s B o | | | \ Ml fluid composition over time.
| Co Wy diorite [Ca Cretaceous metasedimentary and meta- of o 2 2 g R XN L/ - Single grain 50 values vary from
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| bu O EE Y TR / 32 King pendant is composed of marine sedi- U LT E— (| > 10 A0 R —Co— - Zoning has both abrupt and gradual 620

- Fig. 2a (above) shows ~400 m y i —~ mentary rocks deposited during significant W) e R | » shifts of up to 7%o in a single grain.
of relief at the Empire Moun- felsic volcanic activity (Busby-Spera and

Raidical changes in fluid composition are also sup-
ported by intracrystalline features like resorption
surfaces (R), which are caused by fluid-related sur-
face instability and dissolution (Jamtveit et al.,
1993). In addition, although changes in Fe
(andradite) values commonly correlate to changes in
00 values (Clechenko and Valley, 2003; Page et
al., 2010), our data do not support a similar correla-
tion.

| tain study site and is an
| oblique view of Fig. 2b (right).
| Both figures show the isolated
calc-silicate pendants, the
Empire quartz diorite pluton,
and color variations in the
| skarn rocks.
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Saleeby, 1987). At Empire Mountain, the
pendant was intruded and contact meta-
morphosed by the ca. 109 Ma Empire
Mountain quartz diorite (study area boxed
in yellow in Fig. 1) and the hydrothermal
system was unusually shallow compared to
regional studies (1.5-2.5 kbar, 400-635°C;
Brown et al., 1985, Ferry et al.,, 2001;
Lackey and Valley, 2004).

[ e
. [ ]

| ®0 4
L4 o
™ Laser

Meteoric flooding R : e _ * o | PR Stable fluid /
/ Rebound \t° ¢ § o b &y 51 composition Meteoric /g0  s0® o“\

; - s < floodin
S ; ; By B ] N9 — Rebound
() ® Meteoric
° flooding

/ ¥ . : | ‘ 1000
Distance (um) Laser rim ¢ .“ { 8 g s o . N 00 TR n B
400 800 1200 Ty ~ B e o .

Distance (um) 0%

Present Day Skarn-Pluton Relationships
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Nature of the contact zones| | pyroxene > garnet
g 3 t> A cate I Greater proportion of meteoric water than any other time
I gomet> pyroxene - Early/Main Stage " Rl oo y

: i s b 8 wallrock : . :
‘- TNy . (8180< _70 ? e Fluid mixing was confined to the cupola zone of the pluton
The pluton-wallrock contacts . A )~ meteoric (670< ~7%o) . . . .
are bolzh sharp and gradational s .2 S ' ; magmatlc(émog 8-3%03 | . Early-stage garnet has the lowest 580 values, suggest- | cgjc-silicate that is preserved as the capping garnetite section above the
' G R PN * metamorphic (5770 >10%o) ing that meteoric water made up a greater proportion of wallrock L =4 pluton, atop Empire Mountain.

Spalling pendant calc-silicate Foliation and bedding e calyEn SEee meket bl SeEe everEl A e Over time, sustained permeability due to negative volume

xenoliths become progressively , : L A ) . ) ' '
_ 0 Sk Fractures, b ; change of reactions (Meinert et al., 2005).
garnet rich toward the contact & A Ly ractures, brecciation Erosion o | budget. This significant meteoric fluid flux in the early

over 5 — 50cm (1). In  the | il i Epidf)te-q.uartz veining current diorite and main stages is very unus_ual in the development of Magma emplacement estimate: <1kbar lith. pressure

cupola zone (2), the wallrock o Ly Empire Mine (ore zone) topography s skarn systems; we hypothesize that shallow emplace- ol e Large temperature contrast between intruding magma
exhibits sharp contacts with B % SRS O e s We present a model for the evolution of the Empire Mountain CIES e e E_mplre Mountam quartz _dlorlte 5 ey ene \ anci cold pe_ndant_ el il mdin A ITEITELIET _at 109_Ma) '
several lens-like blobs of quartz ' | skarn, based our interpretation of the present-day exposure reason for this early influx of meteoric water (see key, e Field relationships support the importance of brittle failure

- : . R4 $5(0s of the system (above) and all data (D'Errico et al., 2012). We left, for symbols in Figs. A, B). in the enhancement of permeability in the early and main
diorite  (QD, in yellow) and Mo e i describe this evolution in two steps: Early/Main Stage (A, Y : ) A 4| stages of skarn formatioa ty Y
coarse-grained, garnet-rich, with large L right) and Late Stage (B, below). '

calcite filled vugs (1 — 3 cm diameter). A AR
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Skarn mineralization ' | Late Stage Conclusions:

| Petroagenetic seauence: The documented late-stage decrease of the meteoric water signal - 1. Empire Mountain skarn development Thus, we hypothesize that the voluminous
; oy 9 “ resulted from: % Closutre of petm}et?]b'““'/foros'%{ or , | involved a substantial component of Empire Mountain skarn represents a
A) Early growth of distinct granoblastic - greater Input or the metamorphic water Cretaceous meteoric water (low 80  well-exposed, unrecognized model for

a‘H . ) : ,, . . . .
e raﬁ)blgstic ene, and wollastonite. secondary fracture networks in the skarns and cooling pluton. , shallow pluton emplacement likely operated in convergent margin arc

o TS UCLCVICII B) Secondary, overgrowth of beige e Hydration of skarn minerals and pluton alteration by late fluids o _ settings like those of the North American
SRaslicaadle 8 30 ) garnet filling veins and fractures in resulted in Pb-Zn ore deposition (a common feature of skarn ores 2. The dynamics Olf skarn development  Cordillera.
the red garnetite (3) in the Sierra Nevada, Newberry, 1980) PIUtOn appear to h_ave ri‘eisu ted In morie fEXtenkSIVG
e Microthermometry of fluid inclusions late garnets yield minimum margins decarbonation than is typical for skarn
homogenization temperatures of 310-325°C, corresponding to altered systems dominated by magmatic water.

increased 60 values of equilibrium fluids. (Sendek, this meeting).

Late stage, cross-cutting veins con-
taining euhedral quartz + epidote +
calcite precipitated in open-space fill-
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