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division is based on inflection points after filter selection.
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Practical Application

The viscosity ratio provided by FGT can be compared to other methods. Folded
garnet layers in the Northern Snake Range (pictured below) consist largely of rigid
inclusions, giving the layer an effective viscosity much greater than that of the schist
matrix. The Einstein-Roscoe equation can be used to estimate effective viscosity

The Fold Geometry Toolbox

The Fold Geometry Toolbox (Adamuszek et al., 2011)
produces pre- and post-nucleation viscosity ratios
as well as raw geometric data for images of buckle

folds. Assuming a down-plunge perspective, a from inclusions based on percent composition:

path created in Adobe lllustrator representing each ,

interface of the fold is analyzed via existing p= T

mathematical theories (e.g. Sherwin & Chapple, (1=7)

1968 and Schmalholz & Podladchikov, 2001). fis the percent area of the layer consisting of inclusions (Adamuszek, 2012). Using a
Map of the field area, consisting of portions of the Cove, Old Man’s Canyon, and Sacramento Pass Quadrangles (Johnston, 2000). User biaS iS I|m|ted to deﬁning the fOId interfaces thln SeCtiOn Of 3 garnet fOId, we Calculated the percent inCIUSionS to be

and filter selection. This is minimal on relatively approximately 64%, resulting in an effective viscosity enhancement by a factor of

long and consistent fold trains. However, on short only 8. This is inconsistent with results obtained on these folds based on

1. Detachment Zone | g irregular sections as seen in the Snake Range there ~ wavelength/thickness ratios using FGT; a higher viscosity contrast is suggested by

T | can be drastic variations between different filter their general shape as well. The Einstein Roscoe equation is inadequate here since
- = \n\\ selections, and it is sometimes unclear what filter it assumes non-interacting round inclusions, whereas the garnets in these folds are
) width should be chosen. Image resolution can also ~ touching and have angular shapes, providing additional resistance to shortening and
be an issue during the digitization process when shearing the layer. Both factors serve to increase viscosity, in this case substantially.
it is unclear where the layer interface lies. FGT analysis indicates an effective viscosity ratio between 25 and 50, and shortening

between 30% and 60%.
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Figure 11. Sketch to illustrate the progres-
sive amplification of folds in a shear zone
and the development of sheath folds. The

Class Il fold state of lowest shear strain is at the left, that
of highest shear strain at the right. A cross
section through the sheath fold at the loca-
tion shown in the figure would appear as in
Figure 13. (Hudleston, 1986)

Conclusions

1. The garnet fold trains clearly indicate

9

. DUCtlle Slmllar fOIdS (CIaSS ”) Figure 12. Schematic stereoplots of the fold

hinges shown in Figure 11. The great circle

. . . rgpresents the shear plane and the open .
° Scattered h|nge Or.|enta.t|0n5 ::l:gzl:ILhnz?ﬁe:r;);es'nea_}“;olljc;:::%g;arra-! bUCk'Iﬂg and SUQgESt that Components Of
. Chert fOIdS -FGT V|SCOS|ty contrast <5 responds with the left-hand part of Figure12,

and the bottom plot to the right-hand part.

both vertical shortening and horizontal

- — g
R " K,
DT e

(Hudleston, 1986)

o - o dicol \‘* S e T e shortening normal to the extension direction
Marbles with mylonitic foliation display 35 W ese = - o % o e Poles to Axial Tale B
similar folds, while chert layers within the .53 e g Beo s Planes Occurr.ed.’ at IeaSt. locally, reSl.JItmg N
and chert layers are involved in o fi‘r’]aer:t‘jon similar scenario in the Raft River Shear Zone.
late-stage less ductile folding and
faulting. o Mylonitic , ,

Lineation 2. If all shortening experienced by the

garnet layers is compensated for by
extension parallel to the lineation, this
would imply an extension of between
40% and 150%.

- Garnet buckle folds (Class Ic)
 FGT viscosity contrast: 20-35
- Tighter distribution of orientations

Above: Lower in the footwall, within a local 100m scale recumbent
fold with axis parallel to the extension direction, centimeter-scale
g o garnet fold trains in a schist unit of the McCoy Creek Group have
e hinges parallel to the direction of shear and extension. Schistosity
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3. Rheological contrast within the
detachment zone between marble and chert
is modest, with early very ductile structures

being followed by later, more brittle ones.

4. There is evidence for multiple stages
of deformation that likely developed
progressively as the core complex formed.
Folded mylonitic lineation in the upper
footwall indicates an initial more ductile
stage, followed by later brittle
deformation resulting in buckle folds.

« Buckle Folds — Class Ic
« More consistent NW-SE orientations
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A subtle mylonitic lineation is overprinted by folding. In this exposure

the fold hinge is in the plane of the photograph. Large-scale boudinage in the southern wall of Hendry’s Creek canyon

5. Boudinage on multiple scales indicates

Class Ic fold = :
old Hinges . . . . .
extension in the direction of the stretching
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