CORRELATION OF MAJOR TOPOGRAPHIC LINEAMENTS IN THE NORTH CAROLINA BLUE RIDGE WITH REGIONAL FRACTURE ZONES

Jesse S. Hill

Kevin G. Stewart University of North Carolina- Chapel Hill

Study Area

Study Area

Western North Carolina

Study Area

Fracture zones, faults, or something else?

- structural origin of the topographic lineaments
 - -type of structures?
 - –connection to outcrop-scale fractures?
 - -seismogenic?
 - -how old?

- Hadley and Nelson(1971)
 - R-lateral fault
 - has been revised

- Robinson et al. (1992)
 - R-lateral fault has been removed

- Robinson et al. (1992)
 - R-lateral fault has been removed

• Hack (1982)

- Described and named several lineaments
- "...differential erosion along brittle fracture zones associated with older faults."
- Merschat (1997) "...result of jointing, fracturing, and faulting across different rock types"

Earlier work – Canton, NC

Earlier work – Canton, NC

(Joint data from outside lineament from Merschat and Wiener, 1988)

Post-Orogenic Structures

- There are two sets of lineaments—
 - E-W and SE-NW
- cross Paleozoic faults; must be post-orogenic

Reed and the set of th

Belft

Google earth

Source: USGS

260.21 km

5"45'38.60" N 82"45'22.04" W elev 0 1

Post-Orogenic Structures

- lineaments transect the regional structural trend at different orientation
- cross Paleozoic rocks; must be post-orogenic

35"45'38.60" N 82"45'22.04" W elev 0

Source: NCGS, 2007

Google earth

Recent earthquake activity: 1980 - 2012

Source: USGS, 2007

Results 1623 fracture measurements from 98 outcrops within lineaments

Results 1623 measurements from 98 outcrops within lineaments

Results – all lineament data

n=1623

<u>Results</u>

13910 NCGS fracture measurements from Blue Ridge of western NC

<u> Results – NCGS fracture data</u>

Results – NCGS fracture data

n=13910

Results – comparative analysis

All new lineament data

NCGS data

Paleostress inversion – Canton, NC

There is *a priori* knowledge that these are dextral normal faults based on a "stepping-up" texture on the footwall

←West

Paleostress inversion – Results

The best fit stress tensor has a max compressive stress that is close to vertical, which agrees with the *a priori* knowledge that these are dextral normal faults. $\Phi = 0.244$

Fault Slips and Principal Stresses

World stress map

Conclusions:

- E-W topographic lineaments in western NC are associated with E-W outcrop-scale fractures and minor faults
- Outside the lineaments outcrop-scale fractures strike NW-SE and NE-SW
- Paleostress tensor from a minor fault set in the Swannanoa lineament is incompatible with modern-day stress field, although the lineaments appear to be seismogenic
- Doming and N-S extension due to isostatic rebound following erosion

Acknowledgements:

- UNC CH Geological Sciences department Martin Annual Research Fund
 Robert Butler Memorial Scholarship
 Geological Society of America Student Research Grant
 Dr. Kevin Stewart – advisor
 - Dr. Jonathan Lees, Dr. Jason Barnes, and Kehoon Kim