Sorption of Uranium (VI) to Graphite under Potential Repository Conditions

Gary Cerefice, Gregory Schmidt, and Cory Keith

University of Nevada, Las Vegas GSA Annual Meeting 11/5/12

This work was supported by the Department of Energy, Deep Burn Program, under agreement Battelle Energy Alliance Contract No. 0081547 PRIME DOE-DE-AC07-05ID14517 & Contract No. 00094935 PRIME DOE-DE-AC07-05ID14517

Outline

- Graphite in Geological Repository Systems
- Experimental Methodology
- Graphite Characterization
- Results
 - Effect of pH on Equilibrium Sorption
 - Carbonate and Ionic Strength
 - Sorption Kinetics and Desorption
 - Sorption Isotherms
- Conclusions & Future Work

HTGR Fuel Disposal

BWR Fuel¹

TRISO Fuel²

Backfill Applications

Drift Backfill

Borehole Casing/Backfill

Experimental Methodology

- Stock Solutions
 - □ Depleted uranium UO₂(NO₃)₂ in 0.01 M HCl
 - □ Spiked with ²³³U (Eckert & Ziegler) 100 Bq/sample
- Analysis by Liquid Scintillation Counting
- Batch Experiments Common Parameters
 - □ 10 mL:1g solution to graphite ratio
 - □ 10 samples per data point (7 samples, 3 blanks)
 - \Box I = 0.01M NaCl
 - □ pH controlled by addition of 0.01 M HCl or NaOH
 - Borax buffer used for pH 7 to 10 region
 - □ FEP Tubes used from pH 6 to 8 to minimize sorption
 - Mixed on Hematology Mixer for 5 days, Centrifuge to Separate

Graphite Characterization

- Alpha Aesar (-20/+100)
- X-Ray Diffraction
 - No minor phases observed
- FTIR Spectroscopy
 - □ 1631 suggests sp²-hybridized C
 - □ 1384 suggests C-OH formation
 - 3477 suggests surface water or hydrogen-bonded OH groups

- $0.554 \pm 0.027 \text{ m}^2/\text{g}$
- Proton Exchange Capacity
 - $0.25 \pm 0.15 \text{ cmol/kg}$
- Point of Zero Charge
 - pH = 9.3

Equilibrium Sorption – pH Effects

Equilibrium Sorption vs. Speciation

Effect of Ionic Strength

pH	[NaCl] (molal)	K _d (ml/g)
4.03	0.01	8.23 ± 0.08
4.06	0.05	8.58 ± 0.04
4.07	0.1	7.73 ± 0.05
5.07	0.01	51.43 ± 6.84
5.14	1	58.74 ± 15.5
5.16	4	59.84 ± 19.5

Effect of CO₂ on Sorption

[CO ₂], ppm	pН	Mass % Sorbed	K _d (ml/g)
Atmospheric	9.27	21.0% ± 2.27%	2.48 ± 0.25
< 1	9.30	36.7% ± 2.11%	5.48 ± 0.28
~1,000,000	9.28	~0%	N/A
Atmospheric	7.30	92.6% ± 0.97%	126.4 ± 0.28
~1,000,000	7.50	~0%	N/A
Atmospheric	4.85	75.3% ± 3.03%	39.3 ± 4.9
~1,000,000	4.75	28.78% ± 6.59%	4.43 ± 1.6

Kinetic Studies

- Two apparent partitioning phases
 - Rapid Initial Sorption
 - □ Slower "kinetic" phase
- Incomplete recovery during desorption
 - Approx. 10 μg U / g graphite remained sorbed

Sorption Isotherms

- Kinetic sorption and desorption data suggest at least 2 sites
- Fit w/ Freundlich Isotherm, $q = (0.930)c_{eq}^{0.37}$ (pH 5)

Kinetic Sorption Model

Two apparent partitioning phases

- Incomplete recovery during desorption
- Approx. 10 μg U / g graphite remained sorbed

Kinetic Sorption Model Features:

- Sorption behavior has an equilibrium and kinetic fraction
- \supset Eq. fraction has higher K_d than kinetic fraction
 - Can be sub-divided into a low/high solution mass region
- Eq. fraction fills before kinetic fraction in partitioning
- \Box Kinetic fraction has first order rate constant of $\alpha = 0.01925 \text{ hr}^{-1}$
- Equilibrium fraction maximum loading is 1.7 μg U / g graphite

Slow Flow Column Experiment

Dispersion Coefficient	0.903 cm ² /hr
Column Area	0.3845 cm ²
Elution Rate	0.25 cm ³ / min
Column Length	9 cm
Graphite Mass	2.27 g
Graphite Bulk Density	1.794 g/cm ³
Porosity	0.365

- 45-60 minute flow times used at constant concentration
- Tritium used as conservative tracer

Model Prediction vs. Experimental Results

Conclusions and Future Work

- Sorption to graphite is not insignificant
 - Particularly at near neutral pH
 - □ "Irreversibility" of sorption can provide additional barrier to release
- Carbonate complexation appears to suppress sorption

Future Work

- Sorption mechanism is still unknown
- Effects of graphite surface preparation needs to be examined
 - particularly surface oxidation
- Need longer term desorption data to bound desorption kinetics
- Data needed at elevated temperatures
- Isotherms need to be extended to lower concentrations
- Need to extend to other elements (Np, Pu, I, Tc)

Questions?

- 1) Westinghouse Electric Company, Flyer: NF-FE-0011, "SVEA-96 Optima2 BWR Fuel"
- 2) Morris, E. E., T. H. Bauer, "Modeling of the Repository Behavior of TRISO Fuel," Nuclear Engineering Division, Argonne National Laboratory. (2005)
- 3) Fachinger, J. A., M den Exter, *et al.* (2006) "Behaviour of spent HTR fuel elements in aquatic phases of repository host rock formations" <u>Nuclear Engineering and Design</u>, **236** pp. 543-554
- 4) General Atomics, (1996) "Gas Turbine-Modular Helium Reactor (GT-MHR) Conceptual Design Description Report." **GA Project No. 7658**, San Diego, CA
- 5) Nickel, H., H. Nabielek, (2002) "Long-term Experience with the Development of HTR Fuel Elements in Germany." Nuclear <u>Engineering and Design</u>, **217** 141-151
- 6) Petti, D. A., J. Buongiorno, *et al.* (2003) "Key differences in the Fabrication, Irradiation and High Temperature Accident Testing of US and German TRISO-coated Particle Fuel, and Their Implications on Fuel Performance." <u>Nuclear Engineering and Design</u> **222** 281-297
- 7) Sims, D.J., W.S. Andrews, K.A.M. Creber, (2008), "Diffusion Coefficients for Uranium, Cesium and Strontium in Unsaturated Prarie Soil," <u>Journal of Radioanalytical and Nuclear Chemistry</u>, **277**(1) pp. 143-147

