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Experimental Methodology
 Stock Solutions

 Depleted uranium – UO2(NO3)2 in 0.01 M HCl
 Spiked with 233U (Eckert & Ziegler) - 100 Bq/sample

 Analysis by Liquid Scintillation Counting
 Batch Experiments – Common Parameters

 10 mL:1g solution to graphite ratio 
 10 samples per data point (7 samples, 3 blanks)
 I = 0.01M NaCl
 pH controlled by addition of 0.01 M HCl or NaOH

 Borax buffer used for pH 7 to 10 region
 FEP Tubes used from pH 6 to 8 to minimize sorption
 Mixed on Hematology Mixer for 5 days, Centrifuge to Separate
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Graphite Characterization
 Alpha Aesar (-20/+100)
 X-Ray Diffraction

 No minor phases observed
 FTIR Spectroscopy

 1631 suggests sp2-hybridized C
 1384 suggests C-OH formation
 3477 suggests surface water or 

hydrogen-bonded OH groups
 BET Surface Area

 0.554 ± 0.027 m2/g
 Proton Exchange Capacity

 0.25 ± 0.15 cmol/kg
 Point of Zero Charge

 pH = 9.3
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Equilibrium Sorption – pH Effects
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(Kd = 126 ± 7.0 ml/g)



Equilibrium Sorption vs. Speciation

Speciation Curve Generated using EQ3/6 with the YM Database



Effect of Ionic Strength

59.84 ± 19.545.16

58.74 ± 15.515.14

51.43 ± 6.840.015.07

7.73 ± 0.050.14.07

8.58 ± 0.040.054.06

8.23 ± 0.080.014.03

Kd (ml/g)[NaCl] (molal)pH



Effect of CO2 on Sorption

126.4 ± 0.2892.6% ± 0.97%7.30Atmospheric

4.43 ± 1.628.78% ± 6.59%4.75~1,000,000

39.3 ± 4.975.3% ± 3.03%4.85Atmospheric

N/A~0%7.50~1,000,000

N/A~0%9.28~1,000,000

5.48 ± 0.2836.7% ± 2.11%9.30< 1

2.48 ± 0.2521.0% ± 2.27%9.27Atmospheric

Kd (ml/g)Mass % SorbedpH[CO2], ppm



Kinetic Studies
 Two apparent 

partitioning phases
 Rapid Initial Sorption
 Slower “kinetic” phase

 Incomplete recovery 
during desorption
 Approx. 10 µg U / g 

graphite remained 
sorbed
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Sorption Isotherms

 Kinetic sorption and desorption data suggest at least 2 sites
 Fit w/ Freundlich Isotherm, q = (0.930)ceq

0.37 (pH 5)



Kinetic Sorption Model
 Two apparent partitioning phases

 Incomplete recovery during desorption
 Approx. 10 µg U / g graphite remained sorbed

 Kinetic Sorption Model Features:
 Sorption behavior has an equilibrium and kinetic fraction
 Eq. fraction has higher Kd than kinetic fraction

 Can be sub-divided into a low/high solution mass region

 Eq. fraction fills before kinetic fraction in partitioning
 Kinetic fraction has first order rate constant of α = 0.01925 hr-1

 Equilibrium fraction maximum loading is 1.7 µg U / g graphite
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Slow Flow Column Experiment

 45-60 minute flow times used at constant 
concentration

 Tritium used as conservative tracer
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Model Prediction vs. Experimental Results
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Conclusions and Future Work
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 Sorption to graphite is not insignificant
 Particularly at near neutral pH
 “Irreversibility” of sorption can provide additional barrier to release 

 Carbonate complexation appears to suppress sorption
 Future Work

 Sorption mechanism is still unknown
 Effects of graphite surface preparation needs to be examined

 particularly surface oxidation
 Need longer term desorption data to bound desorption kinetics
 Data needed at elevated temperatures 
 Isotherms need to be extended to lower concentrations
 Need to extend to other elements (Np, Pu, I, Tc)



Questions?
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