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Eutrophication of coastal waters

= P and Fe are key limiting nutrients for primary productivity.

= Commonly, an increase in limiting nutrients leads to
eutrophication (under optimal conditions).

= The retention of P in carbonate sediments is considered to be
the main reason that primary production often appears to be P
limited in tropical and subtropical coastal waters.

(e.g. Fourqurean et al 1992; Lapointe et al 1992)



The Nature of the P-Carbonate Interaction

» The release of phosphate from, and adsorption onto sediments
and rocks is calculated as a chemical equilibrium between
dissolved o-phosphate (SRP) and two solid phases: iron- and
calcium-bound phosphate.
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= The shifts in these equilibria have
been attributed to changes in pH,
oxygen availability, redox and
temperature...
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Fig. 1. Phase Diagram of Fe(OOH)- and CaCO; bound ortho-

Phosphate, (Golterman, 1988)



P-Carbonate absorption-desorption

The source and mechanisms for the elevated TP in the mixing
zones GW in Yucatan and Florida are as yet unknown.

Likely mechanisms involve water-rock interactions such as ion
exchange and carbonate mineral dissolution.

Experiments on P adsorption-
desorption in a Key Largo LS block,
showed strong adsorption of SRP in
DIW and high release by desorption

when exposed to seawater.
(Price et al, 2010)
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Fig. 1. Experimental apparatus used for adsorption/
desorption experiments (Price et al, 2010).



P- storage

Re-mineralization
(water pool)
[PO,*]

P -sorption P c o
On carbonate . . . o-precipitation
surfaces = Biogenic/Geological —_— Calcium phosphate
(Mustafa, 2007; Anthropogenic (Millero, 2001)
Price, 2010)
Diagenetic —-HAP P -complexation
Carbonate hydroxy/ (Al, Fe, Mn)
fluoroapatite e.g. Fe-OOH

(Jensen, 1998) (Golterman, 1998)



Yucatan Peninsula: natural laboratory
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Coastal aquifers: density stratified
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Coastal aquifers: density stratified
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Coastal aquifers: sea level changes
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Coastal aquifers: sea level changes

Sea level rise
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What do we know so far?

~200 samples
Cave Diving: 120
Quarries: 8o

Described
ICP-OES

Ca, Mg, Sr, Ba, Si
Fe, Al, Mn, P, S

Different cave
systems

b © 2012 Cnes/Spot Image
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The ‘average’ rock
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Bulk rock composition
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Bulk rock composition: heterogeneity

P Fe
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High-Mg Calcite / dolomite?
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How do they look like?

High-Mg Calcite / dolomite? ‘Shell’
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== Hard ‘“caliche’ crust. Soil scarce, vegetation

Well indurated tan light wackstone

8 878 -876 874 -B7.2

MGr packstone interbeded with planar
laminated FGr tan mudstone

Light tan , v-well indurated mudstone

Friable wackstone composed of 5-10cm
thick well consolidated planar beds

Light tan, v-well indurated mudstone

Packages of interbedding dark tan and light
reddish wackestone

Trace fossils, gastropods




Qa: Is there a geographical decrease inland?
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Depth (m)
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Q2: Is there a decrease with depth?
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Q2a: Is there any relationship to the hydro-chemical mixing zone (halocline)?
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Q3: Chemostratigraphic correlation?
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V-well indurated impermeable caliche; root marks

Light tan thinly bedded mudstone. Infiltration
of reddish clay ‘redzina’ is common

Friable wackestone. Some secondary deposition
in cavities.
Coral heads fossils (montastrea sp.)

Friable wackestone. Articulated bivalves
not imbricated and gastropod fossils.

FGr light pink wackestone, friable

Articulated bivalves

Cavities, conduits and caves are common

VFGr friable mudstone; absence of larg
clast and shell fragmen

Planar bedding
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Continuing forward

Growing dataset

Seeking data on post-Paleozoic carbonate
environments

Yucatan Peninsula sedimentology and
stratigraphy data

Additional characterizations and analyses...
(Thin sections, Raman, stable isotopes, etc.)
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