Drying induced acidity at the mineral-water

interface: ATR-FTIR Spectroscopy

Dr. Javier Aguilar Department of Earth Sciences Stellenbosch University (South Africa)

Introduction

Why mineral-water interface is important?

- Interfacial phenomena govern some of the most fundamental processes, including adsorption/desorption equilibria, speciation, redox reactions, reaction kinetics...

- Wetting - drying cycles are frequent events in terrestrial geochemical systems, most of our understanding of chemical conditions on mineral surfaces is confined to fully hydrated systems

- The chemical conditions on dry or drying mineral surfaces are different to those on a fully hydrated surface

Introduction

Why surface drying is important?

- Drying a clay surface is an acidifying process due to the dissociation of the last few monolayers of water surrounding adjacent polarising cations \rightarrow arid areas

- Very little is known about how acidic the surface gets, at what critical moisture content acidification begins to occur or how reversible drying- induced acidification is

Why infrared spectroscopy is indispensable?

- Limitation \rightarrow Difficulty in measuring changes in an ever diminishing film of water
- Vibration spectroscopy in the IR region is particularly sensitive to the presence of water

- ATR-FTIR spectroscopy allows real time changes in probe molecules to be measured during moisture loss

The present study aims to delineate the pH range of various drying environments with respect to:

i) The effect of mineral type and surface charge

ii) The critical moisture content at which pH changes are observed

iii) The reversibility of acidification after rehydration

Minerals

- Clay minerals (Clay Mineral Society Source Clays Repository)
- Fraction <2 μ m
- Homoionic clays (Na⁺, Ca²⁺, Mg²⁺, Al³⁺)

Minerals

- Clay minerals (Clay Mineral Society Source Clays Repository)
- Fraction $<2 \ \mu m$
- Homoionic clays (Na⁺, Ca²⁺, Mg²⁺, Al³⁺)

Smectite (STx-1)	рН	Kaolinite (Kga-1b)	рН
Na-Sm	7.0	Na-Kaol	6.4
Ca-Sm	6.5	Ca-Kaol	6.2
Mg-Sm	6.6	Mg-Kaol	5.7
Al-Sm	4.8	Al-Kaol	5.6

Indicator

Metanil Yellow (AY 36)

Indicator

Indicator standards

Homoionic clay–H₂O complexes

Experimental procedure: Step 1 – Cation effect

- Addition of homoionic clay (3g/L) (H₂0:Ethanol 40:60)
- Air-dried \rightarrow spectra collection

Homoionic clay–H₂O complexes

Experimental procedure: Step 1 – Cation effect

- Position of the OH-stretching band decreases following the order Na⁺, Ca²⁺, Mg²⁺ \approx Al³⁺ cation polarising power (charge/ Å radius)

- Strongly polarising cations result in stronger hydrogen bonding of adsorbed water on dried smectite clays

- Similar band position (Mg Al) but different shape
- No cation influence on water band shifts with kaolinites \rightarrow CEC_{Sm} = 84.4 m_{eq}/100g

$$CEC_{K} = 2 m_{eq}/100g$$

Minerals

- Clay minerals (Clay Mineral Society Source Clays Repository)
- Fraction $<2 \ \mu m$
- Homoionic clays (Na⁺, Ca²⁺, Mg²⁺, Al³⁺)

S	mectite (STx-1)	рН	Kaolinite (Kga-1b)	рН
	Na-Sm	7.0	Na-Kaol	6.4
	Ca-Sm	6.5	Ca-Kaol	6.2
	Mg-Sm	6.6	Mg-Kaol	5.7
	Al-Sm	4.8	Al-Kaol	5.6

Experimental procedure: Step 2 – Indicator addition

- Crystal + dried clay \rightarrow dried background
- AI-Sm AY 36 spectra recorded during drying period (ratioed against dried background)
- Band position \rightarrow identification of protonated/deprotonated forms

Experimental procedure: Step 2 – Indicator addition

- Crystal + dried clay \rightarrow dried background
- AI-Sm AY 36 spectra recorded during drying period (ratioed against dried background)
- Band position \rightarrow identification of protonated/deprotonated forms
- Hydrated state, the spectra correspond to that of the deprotonated (L²⁻) indicator
- \downarrow water content, \uparrow intensity 1372 and 1550 cm⁻¹ peaks \rightarrow pH decreases

How low the pH falls on dehydration?

	Peak height ratio				
рН	1496/1550	1496/1373	1590/1550	1590/1373	
3.18	8.00	1.36	13.75	2.34	
2.82	1.65	0.72	2.91	1.26	
2.54	1.09	0.55	1.90	0.97	
2.24	0.74	0.43	1.33	0.78	
1.88	0.71	0.35	1.29	0.64	
1.68	0.54	0.32	0.99	0.59	
1.39	0.50	0.29	0.90	0.53	
R^2	0.84	0.92	0.84	0.92	
Al-Sm-AY 36	0.37	0.20	0.51	0.27	

Peak height ratio of the aqueous standards and sorbed

indicator spectra

Reasonable correlation between peak height ratio and pH

pH of the clay surface drops 1.4 > pH > 1.2

Air-drying an Al-Sm creates a **highly** acidic environment

Experimental procedure: Step 3 – Critical moisture content

- In situ colorimetric and gravimetric analysis: dye-clay complex \leftrightarrow degree of surface hydration

Critical moisture content

Critical moisture content

Experimental procedure: Step 4 – Rehydration...a reversible process?

After rewet ting, rapid colour change from deep purple to orange

IR spectra similar to non-protonated form (L²⁻), then changed to partially protonated (HL⁻) as water evaporates

Peak height ratio values similar to those obtained BEFORE rehydration \rightarrow Reversibility

Faster desorption pathway \rightarrow impartial rewetting of the dried Al-Sm clay \rightarrow hydration of the exchangeable Al

Experimental procedure: Step 5 – Other systems

- Na⁺, Ca²⁺, and Mg²⁺ saturated smectites \rightarrow No protonation (even with Bromocresol Green pKa 4.8)

- No protonation on the kaolinite surface low surface charge
- Limited degree of protonation (pH 2.82) of the indicator evaporated in the AICl₃ solution
- Charged clay surfaces play a role in the polarisation of water molecules
- Increased polarization \rightarrow reduce the energy required to break OH bonds \rightarrow pH decrease in the drying

Al-Sm even when the sample was significantly hydrated (125 mg/m²)

Geochemical implications

- pH can decrease below pH 4 even on moderately hydrated smectite surfaces, when strongly polarising cations are present on clay exchange sites

- Montmorillonite-rich soils which have greater amounts of exchangeable acidity than kaoliniterich soils due to the higher CEC of montmorillonitic soils

- Surface and subsoil horizons, partially dry out during the dry season, may experience acidity beyond what is usually measured in conventional methods

- The reversibility with rewetting \rightarrow large pH oscillations during wetting /drying cycles on smectite surfaces with appreciable AI content and could play a significant role in weathering process in arid climates

- Kaolinitic soils are also not likely to be influenced by wetting /drying cycles, regardless of the exchangeable cation

- Pivotal role of highly charged surfaces in the hydrolysis reactions3

More details?

Clarke C., Aguilar-Carrillo J. and Roychoudhury AN, 2011. *Geochimica et Cosmochimica Acta 75*

Questions?