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Abstract
 New construction in Lisbon, CT, has exposed large and conveniently accessible roadcuts with a dense and heterogeneous collec-
tion of faults.  The roadcuts, which are just west of the Tatnic fault, are well-layered gneiss of the Tatnic Hill Formation in the Putnam-
Nashoba terrane.  Fault-slip data from 90 faults were collected in order to understand the post-Alleghanian brittle deformation.  
 Fault-slip data were separated into phases using the program T-Tecto and arranged chronologically based upon age relations iden-
ti�ed from fault surfaces in the �eld.  Phase 1 consists of a conjugate set of ~NW-SE-striking normal faults coupled with a conjugate 
set of ~N-S-striking sinistral strike-slip faults and ~E-W-striking dextral strike-slip faults.  Phase 2 consists of ~NW-SE-striking strike-slip 
faults, interpreted as reactivated surfaces from the normal faults of phase 1.  Phase 3 lacks a conjugate set and consists of faults that 
are most likely reactivated surfaces. Each conjugate set from phase 1 was evaluated separately because drag folds observed in the 
�eld suggest the strike-slip faults (renamed phase 1b) postdate the normal faults (renamed phase 1a).  Phase 1a displays a ~NE-SW σ
3, phase 1b displays a ~NW-SE σ1, phase 2 displays a ~N-S σ1, and phase 3 displays a ~ENE-WSW σ1.
 The stress orientations are interpreted as related to Mesozoic rifting and subsequent development of the passive margin.  Phase 1 
stress orientations indicate a change from NE-SW (phase 1a) extension to NW-SE (phase 1b) compression.  Phase 1b possibly devel-
oped synchronously with structural inversion of the rift basins.  Main-phase rifting with NW-SE extension is not seen, suggesting that 
phase 1a is the transition from rifting to structural inversion.  Phase 2 stress orientations indicate N-S compression and are consistent 
with other observations in New England.  Phase 3 stress orientations indicate ENE-WSW compression possibly characterized by the 
present-day state of stress.  Previous work has seen structural inversion in synrift strata in the Fundy rift basin and southeastern United 
States characterized by NE-striking reverse faults; however, we see structural inversion in basement characterized by conjugate 
strike-slip faults.
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       Well-layered Gneiss
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Rifting

A) Early rifting. Distant plate-tectonic forces produce divergent lithospheric 
displacements. 

B) Late rifting. Lithosphere is substantially thinned. Gravitational-body forces 
and traction forces associated with the hot, low-density asthenospheric up-
welling increase substantially. In response, lithospheric displacements near 
the upwelling exceed those far from the upwelling, causing shortening 
(inversion) in the intervening zone. 

C) Early drifting. Lithospheric displacements far from upwelling increase, 
eventually equaling those near the upwelling. Most shortening/inversion 
ceases, and the asthenospheric upwelling becomes passive. 

Figures Taken From (Withjack et al., 1998).
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Intraplate Tectonics of the Appalachians in Post-Triassic 
Time.  Metcalf (1982).
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From the Middle Triassic to the Early Jurassic, rifting 
fragmented the supercontinent of Pangea and 
formed the passive margin of North America.  The 
east coast of North America contains rift basins re-
lated to the extension and attenuation of the litho-
sphere during early rifting (Withjack and Schlische, 
1998).  As Africa and North America drifted apart, 
the polar reversals of Earths’ magnetic �eld were re-
corded in rocks along the sea �oor.  These magnetic 
anomalies record the trajectories of the continents 
as far back as 155 Ma (M-25).  Seismic and well data 
suggest early sea-�oor spreading began before 
175 Ma.    

Figure modi�ed from Withjack and Schlische 
(2005).

(A) Northeast-striking rift basins start to develop, subside and �ll with sediments during the Middle to Late Triassic. 
(B) The transition from rifting to inversion begins before the early Cretaceous.  
(Upper Right) (Top) The rift basins in northeastern North America develop.  (Middle) The normal boundary faults remain active and the ENA 
magmatic activity favored the emplacement of northeast-striking diabase dikes.  (Bottom) Rifting ceased before the late Early Jurassic to early 
Middle Jurassic and Inversion occurred in southeastern Canada before or during the Early Cretaceous. 
Figures taken from (Withjack et al., 1998)

(A) The Early Jurassic to Early Creta-
ceous activity following ENA mag-
matic activity. 
(Upper Right) (Top) In the southeast-
ern United States, rifting begins 
during the Triassic. (Middle) Rifting 
ceases and northeast-striking reverse 
faults and associated folds develop. 
ENA magmatic activity led to the em-
placement of north to northwest-
striking dikes. (Bottom) Full-�edged 
drifting began between the south-
eastern United States and western 
Africa.  

Figures taken from (Withjack et al., 
1998).

(A) Stereoplot of the mean fault stress 
orientations found in Region II.  D3a 
shows a 000° to 350° σ1.  The data come 
from strike-slip faults found within the 
Hartford-Deer�eld Basin.
(B) Stereoplots of the mean stress orien-
tations derived from reactivated joints 
of the Higganum Dike in southern Con-
necticut.  Each plot is from a segment of 
the Higganum Dike (1 in the northeast 
and 7 in the southwest).  The plots show 
a general σ1 trending NNW - SSE.               

Note: Evidence indicating a north-south 
σ1 in crystalline rocks of Connecticut 
and Massachusetts is lacking (Piepul 
1975).

Figures in (A) taken from (Metcalf, 1982).
Figures (B) taken from (Sawyer and Car-
roll, 1982).

(Upper Right) Map of the contempo-
rary stresses found in New England.  
The compilation of stress data comes 
from earthquake focal mechanisms, 
well bore breakouts and drilling-
induced fractures, in-situ stress mea-
surements, and young geologic data. 
(Right) Enlarged regional map sur-
rounding the �eld site in Lisbon, CT.  
The general trend of the contempo-
rary state of stress for the region is 
consistent with phase 3.

World Stress data provided by; 
Heidbach, O., Tingay, M., Barth, A., 
Reinecker, J., Kurfeß, D. and Müller, B., 
The World Stress Map database re-
lease 2008 doi:10.1594/GFZ.WSM. 
Rel2008, 2008.

Step 1: All 114 faults from Lisbon were analyzed in 
T-Tecto
Step 2:  Faults from phase 1 were analyzed sepa-
rately from the rest of the data because age rela-
tions in the �eld suggest the conjugate strike-slips 
(phase 1b) post-date the conjugate dip-slips 
(phase 1a).  T-Tecto assigned the data into the same 
phase because both conjugate sets can �t into the 
same symmetrical stress regime.
Step 3: All of the data except for phase 1a were 
analyzed. 
Step 4: All of the data except for phase 1b were 
analyzed. 
Final Results: (Red ticks = selected phases)
Phase 1a from step 4 is recognized as the �rst 
phase because of a robust conjugate set of dip-slip 
faults consistent with age relations observed in the 
�eld. 
Phase 1b from step 2 is recognized as the second 
phase because of a robust conjugate set of strike-
slip faults that is consistent with age relations ob-
served in the �eld.
Phase 2 from step 4 is recognized as the third 
phase because cross cutting relations suggest the 
faults are reactivated surfaces from phase 1a.  
Phase 3 from step 4 is recognized as the �nal 
phase because of a northeast trending σ1 that is 
consistent with the contemporary stress in the 
region.
  Red: Strike-slip striae    Green: Dip-slip striae
(A) A fault plane with two sets of striae.  The hori-
zontal striae (strike-slip) dominates the fault plane 
while the vertical striae (dip-slip) is depressed in a 
cavity.  Strike-slip motion would have post-dated 
dip-slip motion.
(B) A fault plane revealing large drag folds result-
ing from dip-slip motion.  Strike-slip striae is super-
imposed on the drag fold.

• The four phases represent data collected from crystalline basement.
• Phase 1a suggests a transition from rifting to structural inversion.
• Phase 1b suggests structural inversion.
• Phase 2 is observed elsewhere in New England. 
• Phase 3 fits the current state of stress in New England.
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