Rocky Mountain Section - 64th Annual Meeting (911 May 2012)
Paper No. 21-5
Presentation Time: 8:00 AM-5:30 PM

USING INSAR TECHNOLOGY AND GROUNDWATER PUMPING DATA TO MODEL LAND SUBSIDENCE FROM COAL BED METHANE PRODUCTION IN THE POWDER RIVER BASIN, WYOMING

GRIGG, Kathleen M., South Dakota School of Mines and Technology, Rapid City, SD 57701, kathleen.grigg@mines.sdsmt.edu, KATZENSTEIN, Kurt W., Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, 501 E. St. Joseph St, Rapid City, SD 57701, and DAVIS, Arden D., Geology and Geological Engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701

In coal bed methane production (CBM), groundwater pumping releases methane gas by reducing pore-water pressure in the source rock. In Wyoming’s Powder River Basin (PRB), groundwater has been extracted for CBM at rates greater than 94 million gallons per day, or 65 thousand gallons per minute. Land subsidence can result from aquifer compaction as groundwater is removed, as is observed in the PRB. Synthetic Aperture Radar Interferometery (InSAR) can measure subsidence at a sub-centimeter scale. In the PRB, InSAR data collected from 1997 to 2000 and 2004 to 2007 indicate several centimeters of subsidence; in the east-central part of the study area, the largest subsidence values of 4 cm and 6 cm can be correlated to large clusters of CBM pumping wells. Other subsidence in the area might be related to oil production and other groundwater use.

The PRB is ideal for groundwater model development and calibration because the aquifer stress (pumping) and response (subsidence) data are both available. This research combines pumping well, monitoring well, subsidence data, and geologic information to develop a groundwater model that predicts the rock compaction observed in the PRB; progress on this model will be presented. Because CBM production requires a well field that is designed to pump groundwater for optimal methane release, understanding aquifer mechanics through groundwater and subsidence modeling could improve well field engineering in the future. Ultimately, an empirical equation could be developed to predict subsidence from groundwater pumping.

Rocky Mountain Section - 64th Annual Meeting (911 May 2012)
General Information for this Meeting
Session No. 21--Booth# 5
Hydrogeology Theme Sessions T4, T6, and T7 (Posters)
Hotel Albuquerque: Alvarado D&E
8:00 AM-5:30 PM, Thursday, 10 May 2012

Geological Society of America Abstracts with Programs, Vol. 44, No. 6, p. -67

© Copyright 2012 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.