

Astrophysical Events as Episodic Threats to Life on Earth

Brian C. Thomas

Dept. of Physics and Astronomy Washburn University

Work supported by NASA grant No. NNX09AM85G

Astrophysical Radiation & Earth

- High energy radiation:
 - X-rays, gamma-rays
 - Cosmic rays charged particles (protons)
- Effects:
 - Atmospheric chemistry changes
 - Nitrogen dioxide "smog"
 - Stratospheric Ozone depletion
 - High-E CRs => energetic muons
 - Muons are highly penetrating

Long-Term Consequences

- Life at the surface sees enhanced UV for years
 - UV strongly affects DNA, proteins, etc.
 - Phytoplankton and other surface dwellers hit hardest
 - Food-web impact
 - Mass Extinction?

O_3 depletion, latitude v. time

Cooling due to opacity of NO_2 ?

Thomas et al. 2005, ApJ, 634, 509

New Scientist, Sept. 2003

A Range of Sources

In order of *increasing* energy and *decreasing* frequency:

- Solar proton events (CMEs)
 - Primarily protons
 - Up to 10²⁵ Joules total

Supernovae (various types)

- X- and gamma-ray photons
- CRs (partly location dependent)
- Up to 10⁴⁶ Joules
- Important at 10's of light years
- Gamma-Ray Bursts (2 types)
 - X- and gamma-ray photons
 - Up to 10⁴⁷ Joules
 - Important at 1000's of light years

Supernova

- Photons for ~ 1 year
 - Global average O₃ depletion up to 35%, lasting up to a decade (assuming distance of ~ 30 light years)
- Cosmic ray enhancement ~ thousand years
 - Also causes O₃ depletion
 - High energy CRs => penetrating muons
- Iron-60 detections around 2.5 Ma strongly indicate a SN at maybe 150 light years.

Gamma-Ray Bursts

- Two main types, both strongly beamed.
 - Long-soft GRB
 - Duration: > 2 s (typical ~ 10 s)
 - Softer spectrum (lower peak photon energy)
 - Special case of core-collapse SN (?)

Short-hard GRB

- Duration: < 2 s (typical ~ 0.1 s)
- Harder spectrum (higher peak photon energy)
- Compact-object merger (?)

Rates for "significant" events

- Rate vs. Fluence (energy per unit area)
 Fluence convolves total energy and distance
- Solar, SN, Short-Hard GRBs, Long-Soft GRBs
- O₃ global average depletion thresholds:
 - 1) ~5%: current, 1859 SPE
 - noticeable bio effect
 - -2) ~35%: 100 kJ m⁻² fluence (GRB, SN)
 - major bio impact mass extinction?

Event Intervals

- Rates summed over all event types.
- Dominated by:
 - Solar at low fluence
 - Supernova and short-hard gammaray burst at high fluence

Estimated Rates

- For events that yield ~ 35% globally averaged O₃ depletion:
 - Short-Hard GRBs: 1 per 300 million years
 - Supernovae: 1 per 500 million years
 - Long-Soft GRBs: 1 per billion years
- For events that yield ~ 5% globally averaged O₃ depletion:
 - Solar: 1 per 1000 years?*
 - Uncertain, few data points, extrasolar data support
 - Supernovae: 1 per 1 million years
 - Short-Hard GRBs: 1 per 3 million years
 - Long-Soft GRBs: 1 per 30 million years

* See Melott & Thomas, Nature, 2012; Thomas et al., GRL, 2013

Extinctions

- 35% global O₃ depletion expected to have severe impact for several years.
- We have previously identified correlations in late Ordovician extinction:
 - Depth and latitude dependence (Melott et al. 2004, Thomas et al. 2005, Melott & Thomas 2009)
- Work in progress to better quantify impact on marine primary producers.
- Future work investigating ecological impact?

End-Ordovician Extinction

- Unexplained short period of glaciation (NO₂ cooling?)
- Bias toward extinction of shallow water organisms, surface dwellers...
- Computed DNA damage from a group of simulations for a variety of southern hemisphere GRB cases
- Data points are extinction rates as a function of latitude.
 - Krug & Patzkowsky, 2004, PNAS
- GRB over the (paleo) South Pole fits

Resources and Acknowledgements

- "Astrophysical Ionizing Radiation and Earth: A Brief Review and Census of Intermittent Intense Sources"
 - Melott & Thomas, *Astrobiology*, v.11 (2011)
- "Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage"
 - Melott & Thomas, Paleobiology, v.35, p.311 (2009)
- "Gamma-Ray Bursts as a Threat to Life on Earth"
 - Thomas, Int. J. of Astrobiology, v.8, p.183 (2009)
- "Causes of an AD 774-775 ¹⁴C increase"
 - Melott & Thomas, *Nature*, v.491, E1-2 (2013)
- "Terrestrial effects of possible astrophysical sources of an AD 774-775 increase in ¹⁴C production"
 - Thomas et al., *Geophys. Res. Lett.*, v.40, p.1237 (2013)

Pre-prints available at arXiv.org

Thanks to various collaborators and students! Current work supported by NASA grant No. NNX09AM85G

END

Summed Rate vs. Fluence

- Dominated by:
 - Solar at low fluence
 - Supernova and short-hard gammaray burst at high fluence
 - SN: From D⁻² to D⁻³ Inside remnant

Varying Event "Hardness" in Photons

- Same total energy received.
- Vary the relative number of high energy photons
- Broadly, Harder = worse

Ejzak et al. 2007, ApJ, 654, 373

Varying Event Duration

- Constant spectrum and energy received.
- Duration from 0.1 to 10⁸ s
- Broadly,
 - Variation in timing
 - But, similar total depletion

Ejzak et al. 2007, ApJ, 654, 373

Rate vs. Fluence

- Solar: Line, Recent SPE; Dots, historical SPE
- "Moon" upper limits on cumulative exposure rates from lunar radionuclides (x=goal; isotopes, ice cores)

Atmo Effects: 1859 Flare

• O₃ depletion:

- Max 5% global avg.
- Similar to current

- Recovery \sim 4 yrs

Thomas et al. 2007, GRL, 34, L06810

Atmo Effects: Long GRB

- Location and season of burst affect intensity and geographic distribution of impact.
- Globally averaged depletions up to 35%

Solar UV and Biological Effects

- Surface UVB (280-315 nm)
 - Solar UVB attenuated by O₃ column
 - Simple approach (no scattering, etc.)
- DNA damage
 - Computed using a weighting function (Setlow 1976) and solar UVB irradiance.

100

Action spectra for selected UV-related effects

Relative DNA damage (normalized by annual global average preburst)

> Note primarily mid-low latitudes affected.

Did a GRB initiate the Late Ordovician Mass Extinction?

EON	ERA	PERIOD	MILLIONS OF YEARS AGO
Phanerozoic	Cenozoic	Quaternary	1.6
		Tertiary	
	Mesozoic	Cretaceous	
		Jurassic	205
		Triassic	240
	Paleozoic	Permian	240
		Pennsylvanian	120
		Mississippian	260
		Devonian	410
		Silurian	425
		Ordovician	500
		Cambrian	570
Proterozoic	Late Proterozoic Middle Proterozoic Early Proterozoic		2500
Archean	Late Archean Middle Archean Early Archean		28002
	Pre-Archea	n	3800?

http://pubs.usgs.gov/gip/fossils/numeric.html

We first proposed this connection in 2004 in IJA

~ 440 million years ago2nd largest mass extinction known

Primarily shallow-sea life at this time. No known land life.

Courtesy W. Berry, UC Museum of Paleontology

Predicted GRB Effects

Extinction of shallow (not deep) water organisms !

Extinction of free-swimming organisms !

Extinction of surface floaters plankton/ planktonic larval forms !

Nitric acid rain ?

Reduction of solar radiation – cooling ?

Extinctions begin with GRB !

No iridium layer due to asteroid, no ²⁴⁴Pu residue from nearby supernova

Late Ordovician Data

Yes (correlation)

Yes (correlation)

Yes (correlation)

Productivity oscillation in biosphere possibly related to nitrate <u>boost</u>.

Yes – glaciation needed "kick"

Extinctions preceeded glaciation and began with plankton

Unknown (not yet observed)

Can we predict any other effects, test the idea in additional ways? Is this a falsifiable hypothesis?

Latitude dependence of extinction

- Krug and Patzkowsky (2007) analyzed the pattern of extinction in the Ordovician.
 - Presented extinction intensities on three continents, varying in latitude.
- Our simulations show a pattern of damage as a function of latitude. Can now test the hypothesis:
 - If UV effects were a dominant part of the extinction, we should be able to match their pattern.
- Any GRB had to be southern hemisphere
 - Fossil record documents a southern hemisphere extinction
 - Atmospheric effects typically are confined to northern or southern hemisphere.

Extinction Intensity Patterns

- All cases show a maximum damage intensity at a latitude that depends on burst latitude.
- Scale shows: maximum damage intensities for southern hemisphere bursts normalized to average value of maxima at equator for all cases

Effect latitude vs. Burst latitude

Comparison with Ordovician Data

- Diamonds (with 2σ error bars) represent samplingstandardized extinction intensities from Krug and Patzkowsky (2007)
- Lines correspond to bursts at latitude 0°, -45°, -60°, and over the South Pole -90° (max damage normalized to average value of maxima at equator for all cases)
- Only a burst between -75° and -90° would fit the extinction data.

