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Spin transition is common with iron-containing minerals at the pressure condition of lower mantle. In this paper we present Raman spectroscopy
study and x-ray absorption study of siderite and hematite respectively. For siderite, we observed the appearance of a new CO, symmetric stretching mode
at 20 cm lower frequency beginning at approximately 46 GPa. This softening is due to the lengthening of the C-O bonds as a result of a combination
of rotation and volume shrinkage of the FeO_ octahedra while siderite undergoes the isostructural volume collapse and spin transition. For hematite, the
pressure-induced evolution of the electronic structure as Fe, O, transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorp-
tion pre-edge. The crystal-field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions
occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing
good qualitative agreement with the measurements. The mechanism for the pressure-induced electronic phase transitions of Fe O, is discussed and it is
shown that ligand hybridization significantly reduces the critical high-spin/low-spin transition pressure.
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Spin Transition of Hematite (Fe,O.,)

Properties of Fe O, at ambient and high pressure
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A. X-ray K-edge absorption of Fe O, at different pressure.
B. X-ray K3 emission of Fe O, at different pressure.

C. Pre-edge of absorption spectra
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Changes in multiplet structure and hybridization are important for a quantitative estimate
of the HS-LS transition pressure. Local cluster physics gives excellent agreement between
the observed pressure dependence of the experimental and calculated spectra.
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