Bonding and Electronic Changes Associated with Spin Transition in Iron-containing Minerals

Spin transition is common with iron-containing minerals at the pressure condition of lower mantle. In this paper we present Raman spectroscopy study and x-ray absorption study of siderite and hematite respectively. For siderite, we observed the appearance of a new CO₃ symmetric stretching mode at 20 cm⁻¹ lower frequency beginning at approximately 46 GPa. This softening is due to the lengthening of the C-O bonds as a result of a combination of rotation and volume shrinkage of the FeO_e octahedra while siderite undergoes the isostructural volume collapse and spin transition. For hematite, the pressure-induced evolution of the electronic structure as Fe₂O₃ transforms from a high-spin insulator to a low-spin metal is reflected in the x-ray absorption pre-edge. The crystal-field splitting energy was found to increase monotonically with pressure up to 48 GPa, above which a series of phase transitions occur. Atomic multiplet, cluster diagonalization, and density-functional calculations were performed to simulate the pre-edge absorption spectra, showing good qualitative agreement with the measurements. The mechanism for the pressure-induced electronic phase transitions of Fe₂O₂ is discussed and it is shown that ligand hybridization significantly reduces the critical high-spin/low-spin transition pressure.

Shibing Wang*, Gabriela Farfan, Wendy L. Mao

Geological and Environmental Sciences, Stanford University; SIMES, SLAC Accelerator National Laboratory, * shibing@stanford.edu

1.2 1.3 1.4 10Dq (eV) Changes in multiplet structure and hybridization are important for a quantitative estimate of the HS-LS transition pressure. Local cluster physics gives excellent agreement between the observed pressure dependence of the experimental and calculated spectra.

See for: S. Wang, W.L.Mao, *et al.* High-pressure evolution of Fe₂O₃ electronic structure revealed by x-ray absorption, Physical Review B 82 144428 (2010)

Spin Transition of Hematite (Fe_2O_3)

$e_{2}O_{3}$ at ambient and high pressure	
Ambient Conditions	High Pressure (>40-60 GPa)
Al ₂ O ₃ Hexagonal	Rh ₂ O ₃ -II Orthorhombic
Insulator	Metal
High-spin	Low-spin

Fe₂O₃ powder is loaded into a panoramic DAC with Be gasket, with He or Ne as pressure transmitting medium.

