Thermo-rheological feedbacks in silicic lavas and ignimbrites

Alan Whittington¹, Graham Andrews², Geoffroy Avard³, Geneviève Robert¹, Jiyang Ye¹ ¹Department of Geological Sciences, University of Missouri, USA ²Department of Geology, California State University Bakersfield, USA ³OVSICORI-UNA, Costa Rica

GSA 2013, Denver

Thermo-rheological feedbacks in silicic lavas and ignimbrites

- 1. Feedbacks between heat flow, rheology and deformation
- 2. Thermal buffering at low strain rate: dacite lava flows
- 3. Rapid heating at high strain rate: pyroclastic flows
- 4. Conclusion: strain heating should be taken into account in thermal modeling of volcanic processes at both high and low strain rates, and both pre- and post-eruption.

Temperature-dependent properties

Fig. 4 Viscosity data for hydrous dacites. Circles = synthetic dacite (this study); diamonds = Unzen dacite (Giordano et al. 2005); triangles = Mt. St. Helens dacite (Alidibirov et al. 1997). Hydrous samples are labeled with water content in weight percent. *Lines* are

Whittington et al. (2009) Bull Volc

Heat generation

Ductile strain heating in rock:

 $H = \tau \dot{\varepsilon}$

Viscous heating in melt:

$$H = \eta \dot{\varepsilon}^2$$

H is in Wm⁻³ τ = shear strength (Pa) $\dot{\varepsilon}$ = strain rate (s⁻¹) η = viscosity (Pa s)

Viscous heating requires high strain rate and/or viscosity

Thermo-rheological feedbacks

Santiaguito, Guatemala

Dacitic dome and lava flows, 4 km long in 5 years (1999-2004)

Dacitic lava flows

Average advance rate 3.7 m/day, max 12.5 m/day (Harris et al. 2003) Flow 18-30 m thick, core shear zone ~12m thick (Harris et al. 2002) Strain rate ~0.7 to 2.7 $\times 10^{-5}$ s⁻¹ if 12m shear zone or ~8.5 to 29 $\times 10^{-5}$ s⁻¹ if 1m thick active at one time.

Core temperature ~850°C, effective viscosity ~1.4 x10¹⁰ Pa s (expts)

Dacitic lava flows

Strain rate ~8.5 $\times 10^{-5}$ s⁻¹ and effective viscosity ~1.4 $\times 10^{10}$ Pa s implies viscous heating ~100 Wm⁻³ within shear zone

Surface heat flux from cold lava (~40 to 80°C) at Caliente vent is ~410 to ~1,060 Wm⁻² (Sahetapy-Engel and Harris, 2009).

Suggests 10 to 25 % of lava flow thermal budget produced by internal viscous heating, facilitating long-lived, highly viscous "stealth" lava flows.

Greys Landing, Snake River Plain, USA

(a) basal ash fall, (b) isoclinal folds, (c) sheath fold, (d) refolded fold

Deposition in aggrading shear zone

Robert et al. (2013) Geology

Ignimbrite rheology

Robert et al. (2013) Geology

Viscous heating during deposition

- short-lived but powerful (1MWm⁻³) strain-heating leads to sustained temperature increase of ~100-250°C
- helps explain enormous extents of lava-like lithofacies
- large pyroclastic flows may travel over a hot substrate

Robert et al. (2013) Geology

Conclusions

- Numerous feedbacks exist between heat flow, rheology and deformation, involving strain heating / viscous heating
- Can be important at low strain rates if viscosity is high e.g. lava flows at Santiaguito ~100Wm⁻³ for ~2 years (Avard and Whittington 2012 *Bulletin of Volcanology*)
- Heating can be dramatic at high strain rates e.g. pyroclastic flows, Snake River Plain ~1 MWm⁻³ for 2-20 hours (Robert et al. 2013 *Geology*)
- Strain heating should be taken into account in thermal modeling of volcanic processes at both high and low strain rates, and both pre- and post-eruption.

