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ABSTRACT
Mass transport is an important process of sediment redistribution 
from shallow to deep sea basins. It is vital to understand this 
process for disaster prevention and protection of economic interests 
in offshore areas. We describe mass transport-dominated 
sedimentation in an active foreland basin, the Hidaka Trough, which 
developed from collision between the northeastern Japan arc and 
the Kuril arc. The basin is deformed by east-west compression 
associated with large, frequent earthquakes. The trough is filled with 
thick (>4.5 km) sediments, ranging from coal-bearing Cretaceous 
terrestrial strata to modern diatomaceous hemipelagic mud and 
volcanic ash. Bottom-simulating reflectors and the distribution of 
mud volcanoes, pockmarks, and acoustic wipe-out zones on the 
seismic records suggest the presence of subsurface gases in the 
sediments. The basin features stacked mass transport deposits 
(MTDs), but no channel-levee systems have developed. The MTDs 
are relatively thin (<30 m) and are derived from three sides of the 
basin margin. Initiation of submarine slope failure in this area may be 
controlled by multiple factors that increase driving forces and 
decrease resistance of the slopes. The driving forces include 
oversteepening of the margin slope as a result of thrusting and 
folding, and additional downslope gravitational acceleration caused 
by cyclic shaking during earthquakes. Decreased resistance in the 
slopes may be caused by the accumulation of excess pore- water 
pressure driven by a high-sedimentation rate, gas hydrate 
dissociation accompanying changes in sea level or seawater 
temperature, and liquefaction in coarse-grained beds during 
earthquakes.
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Figure 2:  Locations of seismic survey lines and coring sites, showing geo-
logical folds and faults.

Figure 5: (a) Mud volcano 
developed on the Toma-
komai Ridge.  (b) Pock-
m a r k s  w i t h  d o w n -
ward-warping depres-
sions. (c) BSR

Figure 8: Conceptual model of mass-transport-dominated sedimentation in 
a foreland basin.  Upper slope instability in the study area is controlled 
by multiple factors, including collisional tectonics, depositional condi-
tions, and subsurface gases.  These factors individually or collectively 
decrease resistance in the sediments or increase driving forces, leading 
to slope failure.  Repeated failure in the upper slope may prevent the 
development of channel–levee systems on the slope; therefore, sedi-
mentation in such environments may be dominated by mass transport 
rather than consistent transport through persistent conduits.  

Figure 4: Description, porosity, bulk density, and soft X-radiographs 
of sediment cores GH06–1048 and 1049.  The sampling loca-
tions are shown on the SBP records and Figure 2.  
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• Mass transport caused by submarine slope failures is a significant 
process in marine sedimentary basins.  

• They induce hazards including tsunami, and the destruction of 
coastal communities and offshore infrastructure, such as subma-
rine cables.  

• Few studies have focused on mass-transport-dominated sedimen-
tary basins at active margins.  

• Studying their process is important in understanding mass wasting 
systems, as well as for disaster prevention and protecting eco-
nomic interests in coastal and marine environments.

• Focus on mass transport deposits (MTDs) in a tectonically active 
foreland basin, the Hidaka Trough, northern Japan.  

• Describe the characteristics of MTDs with regard to local geological 
structures, sedimentation, and subsurface environments.  

• Discuss factors controlling the initiation of submarine slope failures.
• Propose a depositional model for mass-transport-dominated fore-

land basins. 

• Mud volcanoes occur as dome-like, slightly 
elongate mounds onto the seafloor (Figure 5a). 

• Low-coherency and low-amplitude reflection 
zones (acoustic wipe-out or blanking zones) 
occur at depths greater than 1.5–2.0 s TWT 
(Figure 5b).  

• These zones are generally capped by high-am-
plitude reflection (HAR) anomalies (Figure 5b).  
The depth of HARs generally increases with 
water depth, ranging from 0.28 to 0.79 s TWT. 

• The HARs are locally connected to the seafloor 
by vertically elongate features (seismic chim-
neys).  These chimneys cut across horizontally 
stratified reflections, and are expressed as 
vertical zones of distorted seismic reflections 
with low or high amplitude.  They usually con-
nected to pockmarks with downwarping struc-
tures, suggesting conduits of water escaping 
upward (Figure 5b).

•  BSRs at  approx imate ly  0 .3–0.4  s  TWT 
(240–320 mbsf), suggesting the presence of 
gas hydrates in the strata (Figure 5c). 

Figure 1:  (A) Index map of the study area.  (B) Topography and bathymetry around the 
study area, showing the epicenters of major earthquakes post-1973.  Abbreviations: 
OC, Oyashio Current; CO, Coastal Oyashio; TsWC, Tsushima Warm Current; TgWC, 
Tsugaru Warm Current. 

Figure 3: (a) Bathymetry and spatial distribution of MTDs on the surface (yel-
low) and in the subsurface (green) of the Hidaka Trough. (b) MTD off 
Urakawa.   (c) Transverse (A–F) and longitudinal (G) cross sections of 
sub-bottom profiles for the MTD.  

• A narrow multibeam echosounder (HydroSweep)  for bathymetry.
• A sub-bottom profiler (SBP; Parasound, Atlas)  for shallow subsur-

face structures.
• Air gun (355 inch3) and multichannel (6 or 16-ch) streamer cables 

for subsurface structures.
• Grab and gravity corers for sediment samples.
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• The Hidaka Trough was a forearc basin caused by subduction of 
the Pacific Plate along the Japan Trench until the Miocene.

• Thick coal beds were depositis in the Cretaceous and Paleogene 
(A3-Coal Marker in Figure 1). 

• From the Miocene, the Kuril arc began to collide to the Northeast-
ern Japan arc, leading to uplift the Hidaka Mountains and to suds-
ide the Hidaka Trough as a foreland basin.

Results

Discussion

Summary

Subsurface gases

Earthquake Gas hydrate

a

b

c

a b c
• MTDs are widely distributed in the trough (Figure 3a).
 
• The SBP profiles commonly show a typical tripartite 

anatomy: discontinuous and irregular reflections in the 
headwall domain, transparent or chaotic internal re-
flections in the translational domain, and mound-like 
configurations in the toe domain (Figure 3b).

• Headwall domain is characterized by topographically 
depressed and discontinuous reflections.

• The translational domain has transparent internal and 
irregular surface reflections.  It contains vertically 
elongate features with upward-warping surface re-
flections suggesting fluid escapes from the deposits.

• The toe domain is represented by a compressional 
pressure ridge that forms mound-like depositional 
lobes

• The MTDs were sourced from three sides of the margin-
al slope, but predominantly from the northeastern 
margin where headwall scarps are located closest to 
thrusts. 

• The thicknesses range from 10 to 200 m, but most are 
less than 30 m.  The deposits are located in water 
depths of 700–1500 m, and the average gradient of the 
slopes is 0.2–0.8º.

• The transverse and  longitudinal slices of the MTD (Fig-
ure 3c) show internal structural variations. 

• The upper translational domain is restricted by a rela-
tively narrow (5 km) channel, and retains the stratifi-
cation of its internal reflections (A–C).

• The lower translational domain, which shows 
mound-like features at the margins, located higher 
than the central area (C–E). 

• The toe domain is mound-like, with its highest point 
in the center (F).  Internal reflections in this domain 
are completely transparent.  From the SBP records, 
it appears that this MTD has not evolved into debris 
flow or turbidity currents downslope.  

Figure 7:  (A1) Gas hydrate stabil ity in the pres-
sure–temperature domain under the present condi-
tions.  (A2) Changes in the base of gas-hydrate sta-
bility zone (BGHSZ) with changes in sea level.  (B1) 
Gas hydrate stability in the pressure–temperature 
domain under conditions of seawater warming.  
Green lines of T1ky and T10ky represent subsurface 
sediment temperatures after 1 kyr and 10 kyrs of 
seawater warming, which were obtained by solving 
a one-dimensional heat conduction equation with 
the thermal diffusivity of 5×10-7 m2 s-1.  (B2) Chang-
es in the BGHSZ when warming seawater tempera-
ture (2ºC) is accompanied by sea level rise (120 m) 
after 10 kyrs of the seawater warming.  The topo-
graphic cross section was derived from survey line 
1140 in Figure 2.

Figure 6: Relationship between sediment depth [mbsf] and the seis-
mic acceleration coefficient (k) required for slope failure (F < 1) 
at various excess pore pressure ratios (Ru).  Regions of potential 
slope failure are marked by the colored area.

Geophysical and geological surveys in the active foreland basin of the Hidaka Trough have revealed 
the following conclusions:

• The Hidaka Trough is extensively covered by mass transport deposits (MTDs).
• Active compressional tectonics, including folding and thrusting, generally control the morphology 

of the basin margins.
• Seismic records show BSRs, pockmarks, mud volcanoes, seismic chimneys, and acoustic wipe-out 

zones, which provide evidences for the existence of free gases and escape of water from the sea-
floor.

• Submarine slope failures are caused by increases in gravitational forces and reductions in resisting 
forces.

• Increases in gravitational forces may be induced by:
• oversteepening of the marginal slopes as a result of compressional tectonics
• additional downslope gravitational acceleration during earthquakes

 
• Reduction of resisting forces depends mainly on accumulation of excess pore water pressure, 

which may be induced by:
• high sedimentation rates at basin margins
• liquefaction caused by frequent earthquakes in the volcanic ash beds
• free gases originating from older coal beds or generated during decomposition of terrestrial and 

marine organic materials
• gas hydrate dissociation due to pressure reductions resulting from sea level fall or sea tem-

perature rise by the inflow of warm water

 • The MTDs in this area are generally thin (10–100 m thick) and stacked.  The most recent MTDs de-
posited during the last transgression (17–6 ka) might have originated from rapid sedimentation 
during transgression and the occurrence of earthquakes.  Gas-hydrate dissociation by seawater 
warming is unlikely to be the primary trigger of submarine landslides, at least for the most recent 
events, although it may have contributed to the generation of excess pore pressure during the re-
gression stages.
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