Produced Water Accounting and Characteristics: the Case of Hydraulic Fracturing in Texas

Jean-Philippe ‘JP’ Nicot with Bridget Scanlon, Bob Reedy, and Ruth Costley

Bureau of Economic Geology
Jackson School of Geosciences
The University of Texas at Austin

2013 GSA Annual Meeting & Convention
Denver, CO – October 30, 2013
Hydraulic fracturing (HF) of a well requires large amounts of water
but only some of it flows back to the surface
From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Hydraulic Fracturing Water Use

2011: 81.5 kAF
~0.5% of state water use
2013: >100 kAF

Source of raw data: IHS Enerdeq database

IHS, FracFocus, Skytruth
Water use in other states

• Large volumes, 10’s of thousands of HF wells in the US, generally small % of total water use (~2013)
 • ND (Bakken): ~22 kAF (27 Mm3)
 • PA (Marcellus): >20 kAF (>25 Mm3)
 • CO: ~20 kAF (25 Mm3)
 • OK: ~15 kAF (18 Mm3)
 • TX: ~100 kAF (123 Mm3)

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Bureau of Economic Geology

- 600 million bbl/yr oil
- 650 bcf/yr gas
- ~25% of U.S. production
- ~500 kAF O&G
- 7220 million bbl/yr salt water
- ~930 kAF

Approximate values for ~2012-2013

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Based on ~30% of water use

Fraction from recycling / reuse and brackish water

- **Anadarko:**
 - R/R: 20%
 - BK: 30%

- **Midland:**
 - R/R: 2%
 - BK: 30%

- **Delaware:**
 - R/R: 0%
 - BK: 80%

- **Barnett:**
 - R/R: 5%
 - BK: 3%

- **East Texas:**
 - R/R: 5%
 - BK: ~0%

- **Eagle Ford:**
 - R/R: ~0%
 - BK: 20%

- **Fresh water**
- **R/R Brackish**
Flowback at end of Year 1

- Anadarko: ~100%
- Barnett: ~60%
- Midland: ~75%
- Haynesville: ~15%
- Delaware: ~80%
- Cotton Valley: ~60%
- Eagle Ford: ~20%

Based on ~30% of water use
Monthly produced water percentiles – Barnett Shale

Number of wells having produced that many months

90th percentile

Median

5th percentile

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Cumulative produced water percentiles – Barnett Shale

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Time variability of produced water fraction

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
County-level produced water fraction
Barnett Shale: County-level produced water fraction from well completion

- 1 month
- 2 months
- 3 months
- 6 months
- 1 year
- 2 years
- 3 years

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Cumulative produced water percentiles – Eagle Ford

Number of wells

- 70th percentile
- Median
- 30th percentile
- 5th percentile
Barnett Shale: Annual injection well volumes through time (Ellenburger Fm.)

- 2000
- 2001
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011

From Nicot, Scanlon, Reedy, and Costley, Source and Fate of Hydraulic Fracturing Water in the Barnett Shale: A Historical Perspective, in review ES&T
Summary

• Amount of flowback / produced (FP) water is very variable; higher for tight formations
• Water production decline is similar to that of oil and gas
• Only a small and early fraction of the FP water is recycled
• Deep-well injection of FP water is the norm in Texas but overall FP volumes are small relative to other sources
• Amount of FP water is negatively correlated with well productivity (shales)