Application of excitation-emission fluorescence microscopy to thermal maturity of geological samples

Paul C. Hackley¹, Robert C. Burruss¹, Jonathan Boyd²

¹U.S. Geological Survey, MS 956 National Center, Reston VA 20192
²Leica Microsystems, Inc., 1700 Leider Lane, Buffalo Grove IL 60089
Acknowledgments

Bob Ryder – USGS, retired
Maria Mastalerz – IGS
Carla Araujo – Petrobras
Jolanta Kus – BGR
ICCP Commission II – Thermal Indices Working Group
USGS Energy Resources Program
Outline

Objective and Geologic Background – the why
Petrographic Thermal Indices and Minutia – the how
Excitation-Emission Fluorescence Microscopy – the how?
Summary and Future Directions – the next thing
Objective: what is the western limit of thermally mature Devonian shale source rocks in the Appalachian Basin?

Ryder et al. 2013, AAPG S&D; Hackley et al. 2013, Fuel; Araujo et al. ms
Why Important: What is the source rock?

Why is thermogenic gas the dominant hydrocarbon reservoired in the Devonian?

Where is the oil?

Where do we draw boundaries for unconventional resource assessment?

Ohio Geological Survey, 2004
Tasmanites marine algae under ultraviolet illumination

With increasing thermal maturity:
- spectra are red-shifted
- fluorescence intensity increases then extinguishes
- shrinking and cracking develop
- regions of intense fluorescence persist at points of greatest structural deformation (?)

Araujo et al. ms
Ro = 0.45%

Conventional fluorescence microscopy; calibrated to Baranger lamp; reproducible
Laser Confocal Microscopy

- Argon laser, 458 nm excitation @ BGR
- Powerful imaging tool
- High resolution
- Extends observations of organic fluorescence to higher maturity
- Images are false color
- Spectral data are reasonably consistent with conventional spectra from Hg illumination and equiv.

False color laser confocal images, Jolanta Kus BGR
10 nm steps in excitation (470-670 nm)
5 nm steps in emission (490-785 nm), 10 nm bandwidth

white light laser (470 nm-670 nm)
Huron 1 – lowest maturity; R_o 0.45, λ_{max} 519, T_{max} 439 (RE2)

Conventional fluorescence microscopy:
excitation @ 365 nm; emission @ LP 420 nm
Huron 4 – intermediate maturity; R_o 0.53, λ_{max} 611, T_{max} 448 (RE2)
Huron 3 – highest maturity; $R_o \ 0.62$, $\lambda_{\text{max}} \ 610$, $T_{\text{max}} \ 440 \ (RE2)$
Huron 4 – intermediate maturity; R_o 0.53, λ_{max} 611, T_{max} 448 (RE2)

brighter regions, blue shifted
dimmer regions, red shifted
Summary

Laser scanning confocal microscopy applied to geological materials:

So what?
- Improved imaging – high resolution
- Comparable spectra to conventional fluorescence microscopy
- Characterization of thermal maturity
- White light laser allows collection of broad ‘spectrum’ of spectral data – the EEM

Yeah but,
- Comparable spectra to conventional fluorescence microscopy – high instrument costs, long scanning times
- What do the EEMs tell us?
Future Directions

• What do the EEMs tell us?

- Preliminary μ-FTIR data indicate aliphatic chains become shorter & more branched, oxygenated groups decrease
- What will XPS tell us about CNOS abundance & speciation? \(^{13}\)C NMR? Kerogen concentration is challenge!
- Are the EEM data reproducible?
- Can the molecular data be tied to the EEM?

CH\(_2\)/CH\(_3\)

Aliphatic stretch/Oxygenated groups

μ-FTIR data courtesy Maria Mastalerz, IGS
Thank You!

image courtesy of Jolanta Kus, BGR