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What is soil inorganic carbon (SIC) and why is it so important? Figure 6: Average SIC Storage as a Function of Depth
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topography during pedgoensis, the parent material from which the soil is

derived, all of which influence loess deposition (Jenny 1941). Study Area Characteristics: Table 6: Soil Carbon Area Densities (t/ha to 1 m)
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HYPOTHESES

CONCLUSIONS

SIC CONTENT

e Carbon storage in the form SIC comprises the most significant carbon reservoir in
the WSRP. o SIC represents the largest reservoir of carbon in the soils of the WSRP, far exceeding SOC
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