Paper No. 9
Presentation Time: 11:00 AM


PIETRUSZKA, A.J., U.S. Geological Survey, Denver Federal Center, Denver, CO 80225, HEATON, D.E., College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, MARSKE, J.P., Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 and GARCIA, M.O., Department of Geology and Geophysics, University of Hawaii, Honolulu, HI 96822,

The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano’s magmatic plumbing system, but its geometry is poorly known. High-precision Pb isotopic analyses of Kilauea summit lavas (1959-1982) define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a temporal decrease due to changes in the composition of the parental magma delivered to the volcano. Analyses of multiple lavas from some individual eruptions reveal small but significant differences in 206Pb/204Pb. The extra-caldera lavas from Aug. 1971 and Jul. 1974 display lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate, partially isolated magma bodies. Numerous studies (Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the locus of Kilauea’s summit reservoir ~2 km southeast of Halemaumau (HMM) at a depth of ~2-7 km, but more recent investigations have discovered a second magma body located <1 km below the east rim of HMM (Battaglia et al., 2003; Johnson et al., 2010). The association between the vent locations of the extra-caldera lavas near the southeast rim of the caldera and their higher MgO contents suggests that these lavas tapped the deeper magma body. In contrast, the lower MgO intra-caldera lavas were likely derived from the shallow magma body beneath HMM. Residence time modeling based on the Pb isotope ratios of the lavas suggests that the magma volume of the deeper body is ~0.2 km3, whereas the shallow body holds a minimum of ~0.04 km3 of magma. These estimates are smaller than a previous calculation of ~2-3 km3 for Kilauea’s summit reservoir based on trace element ratios (Pietruszka and Garcia, 1999), but are similar to the volume of the magma body that underlies Piton de la Fournaise Volcano on Réunion Island (Albarède, 1993).