Paper No. 2
Presentation Time: 9:15 AM


WEIHS, Brandon J., Geography Department, Kansas State University, Manhattan, KS 66506 and SHRODER Jr, John F., Department of Geography & Geology, University of Nebraska at Omaha, 60th & Dodge, Omaha, NE 68182,

The Teton mass-movement project is focused on characterization of all forms of mass movement, especially rock slides, multiple talus types (rockfall, alluvial, avalanche), protalus lobes, protalus ramparts, lobate and tongue-shaped rock glaciers, and their collective effects on water retention and its late-season delivery in the Grand Teton National Park, WY. A major goal of this project was to reclassify many of the mass movements in the park in an effort to streamline and simplify previous efforts by other scientists. Methods used during this study included field reconnaissance and measurements acquired during the summers of 2010 and 2013 and measurements taken from various datasets (NAIP imagery, shape files used within a GIS (ArcMap 10.0), and Google Earth). Mass movement deposits, as well as ice glaciers and long-term snowbanks, were mapped and interpreted. Overall conclusions are that the major sources of mass movements from the Archean crystalline core of the range are the result of extensive jointing, fault-shattering, increased frost-wedging at higher altitudes, slopes steepened by prior glacial erosion, and extensive snow avalanches. Areas of Paleozoic sedimentary rocks marginal to the crystalline core produce rockslides as a result of steep dips and unstable shales beneath massive overlying carbonates. The presence of internal ground ice enables development of protalus lobes, thicker rock-fragment flows, and thinner boulder streams. Such ground ice is likely to enhance late-season water delivery downstream unless climate warming and recurrent droughts become too extreme.