Paper No. 2
Presentation Time: 8:20 AM

MANTLE SEISMIC STRUCTURE BENEATH USARRAY: SLAB SEGMENTATION AND DEEP ROOTS OF THE YELLOWSTONE HOTSPOT


SCHMANDT, Brandon, Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, bschmandt@unm.edu

The Yellowstone hotspot track is a dramatic example of how EarthScope data are helping to reveal systematic connectivity between deep Earth convection, plate tectonics, and surface geologic activity in the plate interior. Two types of seismic constraints provide evidence for buoyant ascent of a lower mantle thermal plume beneath Yellowstone. First, teleseismic body-wave tomography images of smooth 3-D velocity structure show a vertically elongated and irregular low-velocity volume extending to about 1000 km depth. Second, upward deflection of the endothermic postspinel phase transition that represents the boundary between the lower and upper mantle specifically indicates local upwelling of hot lower mantle. Beyond establishing the present day existence of the Yellowstone plume, recent seismic images afford further insight into hotspot initiation in a region where subducted slabs might be expected to block ascent of a lower mantle plume. Several body-wave tomography using EarthScope data reveal a dissected distribution of high-velocity slabs beneath the western U.S., thus providing potential pathways for plume ascent and origins for the plume’s vertical irregularity. The possibility of plume ascent through such a slab gap has recently been substantiated by other workers’ numerical forward modeling of Farallon subduction constrained by a global plate tectonic model, which predicts a trench-normal slab segmentation event that is spatially consistent with present day tomography and temporally consistent with Miocene initiation of the Yellowstone hotspot track near the edge of Precambrian North America lithosphere.