PREDATORY BEHAVIOR OF A GIANT CROCODYLIFORM FROM THE WOODBINE FORMATION (CENOMANIAN) OF TEXAS

Christopher Noto, University of Wisconsin-Parkside
Derek Main, University of Texas at Arlington
Stephanie Drumheller, University of Tennessee-Knoxville
Lorin King, Western Nebraska Community College

Introduction

- Rely on ichnofossils to understand behavior in extinct organisms
- Direct evidence of predatory behavior in vertebrate fossil record is rare
- Tooth marks can provide information on:
 - Carnivore feeding behavior
 - Trophic structure of community

PALAIOS, 2012, v. 27, p. 105–115 Research Article DOI: 10.2110/palo.2011.p11-052r

FEEDING TRACES AND PALEOBIOLOGY OF A CRETACEOUS (CENOMANIAN) CROCODYLIFORM: EXAMPLE FROM THE WOODBINE FORMATION OF TEXAS

CHRISTOPHER R. NOTO,1* DEREK J. MAIN,2 and STEPHANIE K. DRUMHELLER3

¹Department of Biological Sciences, University of Wisconsin–Parkside, P.O. Box 2000, Kenosha, Wisconsin 53141, USA, noto@uwp.edu; ²Department of Earth and Environmental Sciences, University of Texas at Arlington, 500 Yates St., Box 19049, Arlington, Texas 76019, USA, maindinos@msn.com; ³Department of Geoscience, University of Iowa, 121 Trowbridge Hall, Iowa City, Iowa 52242, stephanie-drumheller@uiowa.edu

Arlington Archosaur Site

AAS Paleoenvironments

The AAS Turtles

AAS Chelonia:

- -3 shell morphotypes
- -1 trionychid
- 2 unidentified

AAS Dinosaurs

Tetanurae indet.

Dromaeosauridae indet.

Theropoda indet.

SYSTEMATIC PALEONTOLOGY

CROCODYLIFORMES
MESOEUCROCODYLIA
GONIOPHOLIDIDAE?
New Gen. Sp.

Methods

Surveyed over 230 specimens

 17 turtle fragments, 2 Protohadros elements with tooth marks

- 3 tooth mark morphotypes
 - Scores: shallow, U-shaped furrows
 - Pits: bowl shaped or irregular depressions
 - Punctures: rounded, collapsed region

Results

Bisected pit

Crushed pit and puncture

- 54 total pits recorded (52% of specimens)
 - 52 on turtle, 2 on Protohadros
- Few pits bisected
- 1 potential puncture

Results

Parallel scores

Hooked scores

Bisected scores

- 26 total scores on 12 fragments, all turtle
- 39% of specimens
- Bisected and hooked scores

Distinguishing the trace maker

VS

Alligator

Theropod Dinosaur

Crocodyliform is the most likely predator

Crocodyliform maxilla with teeth (held by clay) fitted to two large scores on inside of turtle shell

Paleobiology

Feeding behavior similar to living crocodylians

Composite turtle shell with locations of bite marks

Paleobiology

Modern alligators and crocodiles feeding on turtles, exhibiting "nutcracker" behavior

Paleobiology

 Positions of marks on dinosaur bones suggests disarticulation method: grasping limb near joint and shaking, pulling, or death rolling to separate it from the socket

AAS Coprolites

Does the AAS Represent Feeding Grounds?

AAS maps show a broad distribution of coprolites, shed teeth, broken-bitten turtle shell occurring together (denoted by circles).

AAS maps, 1 meter Cartesian based grid (x,y), courtesy Roger Fry.

Crocodyliforms function as important taphonomic agents, accumulating bones from a variety of species in a depositional environment through activities at feeding grounds.

Conclusions

- Remains from the AAS suggest the crocodyliform behaved much like living crocodilians do today. It was an important predator in the ecosystem and reproduced in the area.
- Turtles made up a significant portion of the AAS croc's diet, but it also ate dinosaurs, especially juveniles. It consumed its prey much as living crocs today.
- Giant crocodyliforms remained the dominant large predators in and around aquatic ecosystems throughout the Cretaceous.
- Their specific feeding behavior likely contributed to the rich vertebrate fossil remains preserved at the AAS.

Acknowledgements

Derek Main Stephanie Drumheller Eric Allen Chris Brochu Summer Ostrowski Geb Bennett The AAS Dig Crew **Chris Scotese** Matt Brown The Huffines Family **UT-Arlington UT-Austin UW-Parkside**

Funding

www.arlingtonarchosaursite.com

