

ABSTRACT

The U.S. Department of Energy is currently funding a broad consortium of institutions to develop a new National Geothermal Data System (NGDS) for assessing the geothermal resources of the United States. During the 1970s, course maps of heat flow were produced. Numerous wells have since been drilled in the Illinois Basin region, of which bottom hole temperatures (BHTs) were recorded during the drilling process. Unfortunately, the bottom hole temperatures have never been viewed on high resolution maps. We compiled bottom hole temperature data from geophysical logs and created a detailed database that contains observations of temperature from more than 24,000 wells in Indiana, Illinois, and Kentucky, providing a substantial increase in information on the thermal state of the subsurface. Quality control of the data was based on reduction of duplication, correction of erroneous depths or temperature, and elimination of faulty data acquisitions. For Indiana and Illinois, many records with bottom hole temperature values of exactly 100°F were removed from the database because they resulted from the field operator using depth charts to assign a BHT value, rather than an actual observation of temperature at depth. The BHT values at depths between 3,000 and 12,900 feet were corrected using the Harrison equation to account for error related to the circulation of drilling fluids and better represent an equilibrium, or in-situ, temperature. Geothermal gradients were calculated for each well by using a mean ambient surface temperature at the well location from values obtained from the PRISM Climate Group. Mean geothermal gradients were also calculated for specific geologic intervals. Updated maps of geothermal gradients and temperature anomalies throughout the Illinois Basin show a higher resolution of subsurface thermal conditions than earlier products. Preliminary results for this study suggest that higher gradient heat flows occurred at shallow depths whereas low gradient heat flows occurred at deeper depths.

PROBLEM

The bottom hole temperature datasets from Illinois, Indiana, and Kentucky were created by different people with different intentions for using the data and therefore had inconsistencies between them.

OBJECTIVES

• Provide a method to process data from three different states into a standardized, quality-controlled database for the Illinois Basin region

• Provide better understanding of heat flow in the subsurface

REFERENCES

- Blackwell, David, M. Richards, and P. Stepp, 2010, Texas geothermal assessment for I35 Corridor East: Final Report for Texas State Energy Conservation Office Contract CM709, 88 p.
- Forrest, Joseph, E. Marcucci, and P. Scott, 2007, Geothermal gradients and subsurface temperatures in the northern Gulf of Mexico: Search and Discovery Article #30084, 15 p.
- Foust, M.L., Comer, J.B., and Rupp, J.A., 2003, Geothermal gradient distribution in Indiana: Indiana Geological Survey Open-File Study 03-02, 29 p.
- Harrison, William, K. Luza, M. Prater, M. Lynn, and P. Cheung, 1982, Geothermal resource assessment in Oklahoma: Department of Energy Contract DEAC07-80ID12079, 21 p.
- Sarekarimi, Abouzar and Muhammad, Kashif, 2009, Groundwater flow and salinity in the Illinois Basin: GeoHalifax 2009 Conference, 6 p.
- Swezey, C.S., 2007, National assessment of oil and gas project Illinois Basin Project (064) Boundary: United States Geological Survey.
- Vaught, Tracy L., 1980, An assessment of the geothermal resources of Illinois Based on Existing Data: US Department of Energy Contract AC08-80NV10072, 41 p.

DEVELOPMENT OF NEW GEOTHERMAL DATABASE FOR THE ILLINOIS BASIN Tiffany A. Proffitt^{1,2}, Kevin M. Ellett², Charles W. Zuppann², Shawn C. Naylor², Melony E. Barrett³, Bryan G. Huff³, Chris P. Korose³, Alison B. Lecouris³, T. Chase Noakes⁴, John R. Giardino¹ ¹Texas A&M University, College Station, TX, ²Indiana Geological Survey, Bloomington, IN, ³ Illinois State Geological Survey, Champaign, IL ⁴ Kentucky Geological Survey, Lexington, KY Department of Geology and Geophysics, Texas A&M University, College Station TX 77840

OVERVIEW OF STUDY AREA

Locations of wells with BHT values used in this project. The outline of the Illinois Basin (red) is modified from Swezey (2007).

SURFACE TEMPERATURE MAP

Maximum and minimum temperature data was downloaded from PRISM Climate Group. Rasters

were created from the two datasets and averaged together to form the figure to the right which represents mean annual temperature.

Generalized Stratigraphic Units of the Illinois Basin

The datasets from Indiana, Illinois, and Kentucky as downloaded from the NGDS website (above). Circled in red are the 100-degree problem for Indiana and Illinois and the horizontal wells that had measured depth recorded in place of true vertical depth for the state of Kentucky. These records were removed from the final dataset for the Illinois Basin. The figure to the right is a statistical analysis of corrected versus uncorrected temperatures. The figures below are temperature and gradient maps for the Knox formation showing the effects of correcting temperatures.

HYDRAULIC FLOW POTENTIAL

Hydraulic flow potential (bottom right) of the cross section at the indicated location shown in the left figure. The top right figure is a cross section view of the stratigraphic units.

45-50

0.0- 0.5 1.0-1.5 1.5- 2.0 20-2.5 25-3.0 3.0- 3.5

Statistical analysis of several select formations. As the hydraulic flow model shows, the Cambrian formation experiences less hydraulic potential. The Mount Simon formation at the base of the Cambrian was chosen for comparison with the Pennsylvanian, Maquoketa, and Precambrian. The geothermal gradient means for the three formations decreases with depth just as previous figures have indicated. No difference in the gradients can be determined between the Mount Simon and Precambrian basement as a p-value of 0.14 indicates.

Gradients based on the geologic formation of depth are shown in the figure above. Again, the general trend of smaller gradients at deeper depths can be seen.

