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http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm 
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Low gas recovery factor 15‒30% for Barnett Shale (King, 2012) 
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Pore Structure and Low Hydrocarbon Production 

• Amount of 

gas in place 

• Free vs. 

adsorbed gas 

• Tortuous 

transport 

pathways 

• Gas 

deliverability 

from 

nanopores to 

well bore 

Pore 

structure 
RPSEA project: 

“Integrated 

experimental and 

modeling approaches 

to studying the 

fracture-matrix 

interaction in gas 

recovery from 

Barnett shale” 

Porosity: 5.5% 

k: nanodarcys (10
-21

 m
2
) 

Median pore dia.: 5 nm 

Barnett Shale 

(7,219 ft) 



Pore Geometry and Topology 

Pore structure: shape, 

volume, size, size‒ 

distribution, connectivity, 

and surface area 5 
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Loucks  

et al. 

(2009) 

Intraparticle 

organic 

nanopores 

Ar ion‒ 

beam 

milling 

and field 

emission 

gun SEM: 

resolve 

pores as 

small as 5 

nm 

elliptical to 

completely 

rounded angular 

rectangular 

Where is the porosity? 
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http://www.transcanada.com/customerexpress/docs/presentations_general/

2009_North_American_Shale_Gas_Overview_NECA.pdf 

drive 

your car 

out of 

neighbor

hood 

blind-

folded 

Stimulated 

Reservoir 

Volume 



Multiple Approaches to Studying Pore Structure 

• Pore–scale network modeling (ISU) 

• Imbibition with samples of different shapes (UTA–Gao) 

• Edge–accessible porosity  

• Liquid and gas diffusion 

• Mercury injection porosimetry (UTA–Gao) 

• N
2
 adsorption isotherm (Saitama Univ.; Quantachrome)  

• Water vapor adsorption isotherm 

• Nuclear Magnetic Resonance Cryoporometry (Univ. Kent) 

• SEM imaging after Wood’s metal impregnation (Univ. 

Hannover; Swiss EPMA) 

• Microtomography (high–resolution, synchrotron) (PNNL–

EMSL; Swiss Light Source; Univ. Hannover; Saitama Univ.) 

• Focused Ion Beam/SEM imaging (PNNL–EMSL) 

• Small–Angle Neutron Scattering (SANS)  (LANL) 8 



(Spontaneous) Imbibition Test 

• Rock sample epoxy–

coated along length → 

1D flow 

• Imbibition rate 

monitored                     

continuously over time 
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Depth Sample dimension Height/width Imbibition slope 

7,109 ft 

(2,167 m) 

1.33 cm L×1.76 cm W ×1.43 cm H 

(Vertical) 
0.93 0.214 ±0.059 (N=3) 

1.76 cm L×1.72 cm W ×1.32 cm H  

(Horizontal) 
0.76 0.291 ±0.027 (N=3) 

7,136 ft 

(2,175 m) 

1.38 cm L×1.71 cm W ×1.72 cm H  

(Vertical) 
1.12 0.269 ±0.0045 (N=3) 

1.73 cm L×1.73 cm W ×1.21 cm H 

(Horizontal) 
0.70 0.216 ±0.040 (N=3) 

7,169 ft 

(2,185 m) 

1.35 cm L×1.79 cm W ×1.81 cm H 

(Vertical) 
1.16 0.273 ±0.050 (N=3) 

1.24 cm L×1.78 cm W ×1.32 cm H 

(Horizontal) 
0.87 0.357 ±0.006 (N=3) 

7,199 ft 

(2,194 m) 

1.24 cm L×1.74 cm W ×1.67 cm H 

(Vertical) 
1.12 0.284 ±0.062 (N=3) 

1.74 cm L×1.72 cm W × 1.26 cm H 

(Horizontal) 
0.67 0.282 ±0.047 (N=3) 

7,219 ft 

(2,200 m) 

1.37 cm L×1.74 cm W × 1.95 cm H 

(Vertical) 
1.25 0.306 ±0.019 (N=3) 

1.69 cm L×1.71 cm W ×1.36 cm H 

(Horizontal) 
0.80 0.264 ±0.046 (N=3) 

Imbibition Results for Barnett Shale Samples 



Percolation Theory 

p = 0.5 p = 0.66 

percolation threshold 

0.5 < pc < 0.66 

(for 2D square lattice) 

“Ant in a labyrinth” 

 
Solute in a pore system 

The mathematics of how macroscopic properties 

result from local (microscopic) connections 

p is the local 

connection probability 

↔
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β ≈0.41 and ν ≈0.88 in 3-D  

Stauffer, D., Aharony,  A., 1994. Introduction to Percolation 

Theory (2
nd

 Ed.). Taylor and Francis, London. 

Pore-Scale Network Simulation 
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Solid 

Liquid 

LA‒ICP‒MS instrumentation 



3D Elemental Mapping: Edge‒Accessible Porosity 

ReO
4

-
 (non‒sorbing) 14 

2 µm 

12 µm 

54 µm 

224 µm 

2 mm × 2 mm mapped area 

(500 µm spacing, 100 µm 

laser spot size) 

Barnett Shale (7,136 ft) after 

vacuum‒saturating with tracers 
After 1 hr,  

Vacuum =  

99.91% 
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Liquid Tracer Diffusion in Saturated Intact 

Shale 

tD

x
erfc

C

C

e22

1

0



eD

D
0

Water‒saturated shale in 

contact with a tracer mixture 

Fitted tortuosity 

100 (exterior); <10,000 

(interior)  
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LaFollette, R. 2010. Key Considerations for Hydraulic Fracturing of Gas 

Shales. Manager, Shale Gas Technology, BJ Services Company, September 9, 

2010. www.pttc.org/aapg/lafollette.pdf  
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For C/C

0
=0.5 @ 1 m/y, τ=613 

For C/C
0
=0.01 @ 1 m/y, τ=9,800 

anecdotal 

~1 m/yr movement (advection vs. diffusion ?) 
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Gas Diffusion in Partially‒Saturated Shale Powder 

• Powdered shales 

(with pore networks 

effects minimized) 

still exhibit tortuous 

pathways  

• Tortuosity related to 

water saturation 



Multiple Approaches to Studying Pore Structure 

• Pore–scale network modeling (ISU) 

• Imbibition with samples of different shapes (UTA–Gao) 

• Edge–accessible porosity  

• Liquid and gas diffusion 

• Mercury injection porosimetry (UTA–Gao) 

• N
2
 adsorption isotherm (Saitama Univ.; Quantachrome)  

• Water vapor adsorption isotherm 

• Nuclear Magnetic Resonance Cryoporometry (Univ. Kent) 

• SEM imaging after Wood’s metal impregnation (Univ. 

Hannover; Swiss EPMA) 

• Microtomography (high–resolution, synchrotron) (PNNL–

EMSL; Swiss Light Source; Univ. Hannover; Saitama Univ.) 

• Focused Ion Beam/SEM imaging (PNNL–EMSL) 

• Small–Angle Neutron Scattering (SANS)  (LANL) 18 
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MIP: Pore–Throat Size Distribution 

Barnett Shale sample (~15 mm cube) 

in the penetrometer 

• Mercury Injection 

Porosimetry (MIP) 

• Non‒wetting Hg 

progressively intrude smaller 

pores with increasing 

pressures 

• Measurable pore diameter 

range: 3 nm to 360 µm 
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MIP Intrusion Results: 6 Representative Rocks 

Depth 
Porosity 

(%) 

Median pore-

throat  

diameter 

(nm) 

Permeability 

(µdarcy) 
Tortuosity

 

Berea 

Sandstone 
22.9±1.72 23,776±876 (595±21.2)×10

3 
3.31±0.33 

Indiana 

Sandstone 
16.4±0.4 19,963±2,932   (221±40.8)×10

3 
4.68±1.68 

Welded Tuff 10.0±0.5 47±7.1 0.83±0.14 1,745±66 

Dolomite 9.15 873 409 38.3 

Barnett 

Shale 

(7,199’) 

5.97±1.43 6.1±0.3 (4.96±1.42)×10
-3 

12,867±16,224 

NC Granite 1.05 970 12.4 38.2 

Permeability: Katz and Thompson (1986; 1987) 

Tortuosity: Hager (1998) 
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N
2
 Sorption Isotherm 

• Physical adsorption of N
2
 at cryogenic 

temperatures (77K, -196°C) 

• Molecular sorption by van der Waals 

forces; monolayer coverage; multilayer 

formation; capillary condensation; total 

pore volume filling 

• Various theory to estimate pore–size 

distribution 

• Autosorb-IQ-

MP by 

Quantachrome 

• Pore size range: 

0.35–500 nm 

 
Shoichiro Hamamoto 

(Saitama University) 

Type IV isotherm: capillary condensation in mesopores 

Type H3 loop: slit-shapes pores 

Density 

Function 

Theory (DFT) 



22 

N
2
 Sorption Isotherm: Hysteresis Loop 

Yucca Mt. welded tuff 

Porosity: 10% 

Median pore dia.: 46 nm 

k: 0.9 µD 

Barnett Shale (7,136 ft) 

Porosity: 1.05% 

Median pore     

dia.: 7 nm 

k: 1.1 nD 

Quantachrome Instruments 

• Isotherm does not close for the 

Barnett Shale from extremely 

complex pore network effects 

• CO
2
 adsorption at 273.15K for 

micropore (0–2 nm) analysis 

indicates the presence of some 

volume of pores at ~0.35–0.7 nm 

N
2
 

vaporization 

delay in pore 

C gives rise 

to hysteresis 

Only 

pore B 

is open 

to the 

surface 

Seaton (1991) 

Ayaz Mehmani & 

Masa Prodanovic of 

UT–Austin 



Drying 

NaOH CH3COOK K2CO3 NaNO2 NaCl KCl Na2SO4 CaSO4 H2O 

Wetting 

RH (%) 6.96 22.9 43.2 66 75.4 84.8 93 98 99 

Pc (MPa) 363 202 114 56.5 38.5 22.6 9.88 3.52 1.37 

Dia. of 
meniscus 
curvature 

(nm) 

0.80 1.45 2.54 5.13 7.55 12.9 29.4 106 212 

Water Vapor Sorption with RH Chambers 
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Barnett Shale (7,109 ft; 2,167 m) 

Capillary Pressure Curve: Hysteresis Loop 

Hysteresis 

effect on 

imbibition & 

retaining 

percentage of 

fracturing 

fluid? 
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Pore Size Distribution: Method 

Comparison 

(NMRC data from Beau Webber, University of Kent) 

NMR Cyroporometry (NMRC) 

• Use melting curve 

to calculate the 

pore size 

distribution by 

Gibbs–Thomson 

equation 

• Measureable pore 

diameter range: 

~1 nm to 10 µm 

• Sample size: NMR 

probe/tube 2.5 

mm dia. × 12 mm 

(30 to 300 mg) 

• Measurement 

time: a few hrs to 

>24 hrs 



Multiple Approaches to Studying Pore Structure 

• Pore–scale network modeling (ISU) 

• Imbibition with samples of different shapes (UTA–Gao) 

• Edge–accessible porosity  

• Liquid and gas diffusion 

• Mercury injection porosimetry (UTA–Gao) 

• N
2
 adsorption isotherm (Saitama Univ.; Quantachrome)  

• Water vapor adsorption isotherm 

• Nuclear Magnetic Resonance Cryoporometry (Univ. Kent) 

• SEM imaging after Wood’s metal impregnation (Univ. 

Hannover; Swiss EPMA) 

• Microtomography (high–resolution, synchrotron) (PNNL–

EMSL; Swiss Light Source; Univ. Hannover; Saitama Univ.) 

• Focused Ion Beam/SEM imaging (PNNL–EMSL) 

• Small–Angle Neutron Scattering (SANS)  (LANL) 26 



• Wood’s metal (50% Bi, 25% Pb, 12.5% Zn, and 12.5% Cd) 

solidifies below 78
°
C without shrinking 

• Heat the metal slowly (about 1 hr) above the melting point 

(120–150
°
C) 

• Inject molten metal into the connected pore spaces under high 

pressure; sample size (up to 5 mm dia. and 15 mm long) 

• Image metal distribution in polished sections 150 μm thick 

Dultz at al. (2006) 

Wood’s Metal Intrusion and Imaging 

27 Kaufmann (2010) 
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Berea 

sandstone 

Image porosity: 21.4% 

Measured porosity: 21.0±0.147 

Wood’s 

metal 

injection 

600 bars 

used 

(invade 

20 nm) 

Stefan 

Dultz 

(University 

of 

Hannover) 
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Eagle Ford shale 

Wood’s 

metal 

injection 

600 bars 

used 

(invade 

20 nm) 

Stefan 

Dultz 

(University 

of 

Hannover) 

Natural fractures 

pyrite framboids (2–10%) 
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Barnett Shale 

7,169 ft 

Wood’s metal 

accumulation at 

the surface 

Wood’s metal 

occupied crack 

and matrix 

pores connected 

to the sample 

surface 

SEM-BSE 

by Stefan 

Dultz 

(University 

of 

Hannover) 

1,542 bars 

used 

(invade 9 

nm in pore 

dia.) by 

Josef 

Kaufmann 

of EPMA 

Wood’s 

metal 

injection 
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Nano–Scale FIB–SEM Imaging 
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Nano–Scale FIB–SEM Imaging 

Slice 

No. 1 

Slice No. 

150 (1.5 

µm deep) 

• µm scale observation scales 

• Need 3–D reconstruction imaging 

software (e.g., Avizo Fire) 

• Working with Hongkyo Yoon of Sandia 

Lab about pore structure processing 

 

 

 

 



Melnichenko, Y. B. and G. D. Wignall. 2007. Small-

angle neutron scattering in materials science: Recent 

practical applications. J. Appl. Phy. 102(2), 021101.  

Small–Angle Neutron Scattering (SANS) 

33 

• Developed and refined over the past 2 decades for structural 

characterization of various natural and engineered porous materials 

• Non–destructive nature 

• Record the scattering from all pores (connected and closed); closed pores 

are inaccessible to fluids and, therefore, immeasurable by other techniques 

• Have the ability to investigate pore structure at realistic (reservoir) P–T 

conditions and changes in pore structure at variable P–T conditions 

• BT–5 perfect crystal USANS at NIST Center for Neutron Research 

(NCNR); General–Purpose SANS instrument at Oak Ridge National Lab 

(ORNL); The Lujan Neutron Scattering Center at Los Alamos National 

Lab (LANL) 

• Measurable pore diameter range: 0.5 to 200 nm (for SANS) and ~10 µm 

(for ultra SANS or USANS) 

• Measurement time: ~ 60 min for SANS and 7 hrs for USANS 



Question 

Theory 

Modeling 

Complementary 

measurements 

Analysis 

and 

evaluation 

Hypothesis 

Low gas 

recovery 

in Barnett 

Shale 
Pore 

geometry and 

topology 

Ongoing work: CH
4
 retention and transport in 

crushed and intact Barnett Shale 34 



Summary 

• Steep 1
st
 year decline and low overall hydrocarbon 

production observed in stimulated shales    

• Shales show low pore connectivity, which reduces gas 

diffusion from matrix to stimulated fractured 

network 

• Several complementary approaches are used to 

investigate pore structure in tight shales 

 Imbibition and diffusion: macroscopic method 

 Porosimetry and vapor condensation: indirect 

method 

 Imaging (Wood’s metal, FIB/SEM, SANS): nano–

scale tool 35 
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