2014 GSA Annual Meeting in Vancouver, British Columbia (19–22 October 2014)
Paper No. 191-4
Presentation Time: 8:48 AM-9:08 AM


GLASS, Jennifer B.1, REED, Benjamin C.2, DICHRISTINA, Thomas J.2, STEWART, Frank J.2, FOWLE, David A.3, and CROWE, Sean A.4, (1) School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, jennifer.glass@eas.gatech.edu, (2) School of Biology, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332, (3) Department of Geology, University of Kansas, Multidisciplinary Research Building, 2030 Becker Dr, Lawrence, KS 66047, (4) Microbiology & Immunology; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada

Methane is an important greenhouse gas and methane-based microbial metabolisms likely evolved billions of years ago. Prior to the Great Oxidation Event, the major sink for methane is postulated to have been microbial anaerobic oxidation of methane (AOM). In modern marine sediments, AOM is generally coupled to reduction of sulfate, an electron acceptor that was extremely scarce in the ancient ocean. While microorganisms that couple AOM to reduction of nitrate, nitrite and sulfate have been characterized, and geochemical data suggests that AOM coupled to Fe(III) and Mn(IV) reduction (Fe- and Mn-AOM) is thermodynamically favorable and occurring in diverse marine and freshwater environments, the organisms mediating Fe- and Mn-AOM remain unknown. Lake Matano, Indonesia is an ideal ecosystem to enrich Fe- and Mn-AOM microbes because its anoxic ferruginous deep waters and sediments contain abundant Fe(III), Mn(IV) and methane, and extremely low sulfate and nitrate. Our research aims to isolate and characterize the microbes mediating Fe- and Mn-AOM from Lake Matano sediments through serial enrichment cultures in minimal media lacking nitrate and sulfate. 16S amplicon sequencing of sediment inoculum revealed the presence of the Fe(III)-reducing bacterium Geobacter as well as a number of Euryarchaeota implicated in AOM including ANME-1 and 2d and methanogenic Methanosarcinales. After 90 days of primary enrichment, all three sediment layers showed high levels of Fe(III) reduction (60-90 uM Fe(II) d-1) in the presence of methane compared to no methane and heat killed controls. Secondary enrichments showed highest Mn(IV) reduction (40-90 uM Mn(IV) d-1) in the presence of methane and anthraquinone-2,6-disulfonate (AQDS), a humic acid analogue and electron shuttle. Comparison of the phylogenetic composition of microbial communities in inoculum and Fe- and Mn-AOM enrichment and quantification of AOM rates are underway.

2014 GSA Annual Meeting in Vancouver, British Columbia (19–22 October 2014)
General Information for this Meeting
Session No. 191
Harnessing “Omics” to Advance the Geosciences: New Paradigms and Platforms for Observing Earth Systems
Vancouver Convention Centre-West: 304/305
8:00 AM-12:00 PM, Tuesday, 21 October 2014

© Copyright 2014 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.