### **Geology and Exploration of** Gem Deposits at Mt. Carmel, **Northern Israel:** Natural Moissanite, Sapphire, **Ruby & Diamond**

Howard Coopersmith, Vered Toledo, John Ward, Michiel De Wit, R Spaggiari, Emmanuel Fritsch

### Northern Israel Geological map

- Predominantly Cretacous Marine Sediments
- Younger Sediments
- Cretaceous
   Volcanic Rocks
- Neogene Basalts
- Cretaceous to
   recent Alluvials





#### Shefa Yamim is exploring for Gem Mineral Deposits

Current SY Exploration (869B4) and Prospecting permits (837A8 and 899A3) are shown

Digital Earth Model- Hall, 2005. Geological map- Sneh *et al.*, 1998



#### **Area Explored through Heavy Mineral Prospecting**

SY sampling locations (total of 1,127 samples to date)



(background geology adapted from Sneh, et al., 1998)

### Source to Sink Geological Model

Geological model in 3D view. Note the 3 fold division of the Kishon catchment. The model is a guideline to placer exploration in the Kishon catchment.



#### Shefa Yamim Alluvial Geological Model

- Map view of model extent



Placer Sample Locations

- Kishon River
- Large Diameter
   Drilling
- Core Drilling
- Geologically Logged
- Bulk Samples
- Minerals Recovered



### **Kishon River Drainage**



### **Kishon Bulk Sample**



### **Kishon Large Diameter Drilling**













### **Kishon River Placer Minerals**

• Economic Mineralization Targets

- Diamond, Natural Moissanite, Corundum (DMC)

- Accessory Heavy Minerals
  - Garnet, Ilmenite, Zircon, Rutile, Pyroxene,
     Amphibole, Olivine, Spinel, Kyanite, FeTi Alloy
- Likely Derived from Mafic Volcanics
  - Volcanics contain Mantle Xenoliths
  - Indications of Deep, High Pressure Phases

### **Recovered Minerals**



### Mt. Carmel Corundum

- Ruby
- Sapphire
- To 5.8 carats so far
- Xenocrysts in Volcanic Pipes and in Basalts
- Inclusions are being studied and may give clues as to origin

#### **Volcanic centers as sources for alluvial corundum**



## Sapphire













## Ruby













### Sapphire and Ruby analyses by Laser Ablation – Inductively Coupled Mass Spectrometry (LA-ICPMS)

- Sarah Gain & Bill Griffin

### **Sapphires** - variations by colors

- Average trace element concentrations (ppm  $\pm 1\sigma$ ):
  - FeO = 1.04% ± 0.29
  - Si = 1478 ± 133
  - Ti = 280 ± 251
  - Cr = 260 ± 586
  - Ga = 158 ± 69
  - Mg = 88 ± 93
  - $V = 61 \pm 118$
  - $P = 29.7 \pm 3.8$
  - B = 2.0 ± 0.5
  - Mn = 1.2 ± 1.0
  - Zn = 1.0 ± 1.3
  - Cu = 0.14 ± 0.07

### Natural Moissanite

- Primarily known as microscopic grains as inclusions in other minerals – less than 0.5mm
- Discrete Grains extremely Rare
- No Commercial Value to these tiny Grains
   UNTIL
- New Discovery of Abundant & Large Grains

   Carmel Mountain area of northern Israel

### **Carmel Mtn. Moissanite**

- Hardrock in Volcanic Rocks
- Valley Deposits in Alluvium derived from rock
  - Placer Deposits identified and sampled
  - Drill and Pit Sampling
- Discreet Grains < 0.5 mm to 4.1 mm

- World Record Sizes

- Gem Quality, mostly deep Blue, some Green
- Confirmed by modern Gemological techniques

### Moissanite



### Natural Moissanite 4.1mm







# **Diamonds recovered (**77 diamonds in total mostly alluvial), including 0.88 carat Gem (middle) Diamond.

**One Micro-Diamond in-situ** 



### Rakefet Volcaniclastic Complex

- Vents and Pyroclastic Deposits
- Kimberlitic in appearance
- Kimberlitic Indicator Minerals
- Source for High Pressure Minerals & Gem Minerals





### Convergent Margin Volcanic Emplacement of Deep Minerals at Mt. Carmel



Stachel and Harris 2008

### CONCLUSIONS

- New Gem Occurrence being developed
- Important discovery of true Natural Moissanite – "large" & abundant
- Minerals carried from depth in convergent plate arc volcanics, eroded into Alluvial environment deposits
- Shallow *Peridotitic* lithosphere and Deeper *Eclogitic* component?
- Paragenesis is being studied