TECTONIC EVOLUTION OF THE POLYGENETIC INGALLS OPHIOLITE COMPLEX, CENTRAL CASCADES, WASHINGTON: A POSSIBLE RECORD OF JURASSIC FOREARC ACCRETION AND RIFTING?
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STATEMENT OF PROBLEM

The Ingalls ophiolite complex, Washington Cascades, is dismembered and consists of ultramafic rocks that contain oceanic
crust as large-scale fault blocks in a serpentinite mélange. This mélange separates |herzolite in the north from harzburgite and
dunite in the south and overprints mylonitic Iherzolite. Mineral assemblages in the mylonitic Iherzolite suggest T > 900° C and
were interpreted to have formed in a fracture zone. Crustal units in the large fault blocks are well preserved and divided into
the: Iron Mt. unit; Esmeralda Peaks units; and sedimentary rocks of the Peshastin Fm. The Iron Mt. unit consists of pillow
basalt and broken pillow breccia, with minor rhyolite, hyaloclastite, oolitic limestone and chert. A U-Pb zircon age from a
rhyolite is ca. 192 Ma. Geochemical affinities of this unit are transitional between OIB and E-MORB. Sediments that overlie this
unit are Early Jurassic (Pliensbachian). The Esmeralda Peaks unit consists of pillow and massive flows, diabase with minor
sheeted dikes, gabbro and rare tonalite and trondhjemite. A U-Pb zircon age from a gabbro is ca. 161 Ma. Geochemical
affinities of this unit are transitional between island arc tholeiite and N-MORB, and rare boninites exist. Late Jurassic
(Oxfordian) sediments conformably overlie this unit and have geochemical affinities indicating a volcanic arc provenance.

It is interpreted that the Iron Mt. unit formed as an off axis seamount ca. 192 Ma. This seamount was then accreted onto an
Early Jurassic forearc as the oceanic lithosphere it sat on was subducted. Early Jurassic sediments were then deposited on this
accreted seamount. Rifting of this forearc began in the Late Jurassic, forming oceanic crust of the Esmeralda Peaks unit. This
forearc ophiolite then transitioned into a back-arc basin that included a fracture zone. Late Jurassic sedimentation probably
initiated in the forearc and continued in the back-arc. Thus, the Iron Mt. unit and overlying Early Jurassic sediments formed the
rifted basement for the Late Jurassic Esmeralda Peaks unit and overlying sediments. This polygenetic ophiolite was then
accreted onto the North American margin and translated to the north. It was thrusted over the Cascade Crystalline Core in the
Late Cretaceous.

e In the southeastern portion of the Ingalls ophiolite complex (Fig. 3), the Sheep Mountain and Kings Creek areas,
there is an unusual occurrence where Early Jurassic ophiolitic basement, the Iron Mt. unit, appears to

conformably sit under Early Jurassic argillite (Fig. 4 & 5). This Early Jurassic argillite transitions to Late Jurassic

argillite (based on radiolarian fossils in chert; Fig. 4 & 5). Finally, Late Jurassic ophiolitic rocks, the Esmeralda
Peaks unit, sits conformably on top of the Late Jurassic argillite (Fig. 4 & 5).

e \What tectonic setting could have resulted in the unusual occurrences of lithologies in the Sheep Mountain and
King Creek areas of the Ingalls ophiolite complex (Fig. 4 & 5)?
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Mid-Late Jurassic ophiolites of the North
American Cordilleran. Displaying the: Coast
Range; Josephine; and, Ingalls. Modified

from Metzger et al. (2002).

Simplified geologic map displaying pre-Cenozoic
tectonic elements of the central and northwest

Cascades. Modified from

Miller et al. (1993), Tabor

(1994), and Brown and Dragovich (2003).
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Generalized geologic map of the
Ingalls ophiolite complex.
Generalized cross section is
through the eastern portion of
the complex. Modified from
Miller (1985), Miller et al.
(1993) and MacDonald et al.
(2008a). East-west cross section
was drafted by A. N. Mlinarevic
and is used with permission.
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Generalized geologic map of the southeastern portion of the Ingalls ophiolite complex. Note the Sheep Mt.
and King Creek area geology. Figure modified from MacDonald et al. (2008b)
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AGE OF UNITS

IRON MOUNTAIN UNIT:

e MacDonald et al. (2008a) reported a multi-fraction TIMS U-Pb zircon age from

an Iron Mountain unit rhyolite as 192 + 0.3 Ma (2o0; MSWD = 3.3) (Fig. 3 & 4).

e MacDonald et al. (2008a) reported intra-pillow chert that contained Early
Jurassic age (Pliensbachian) radiolarian fossils (Fig. 3 & 4).

ESMERALDA PEAKS UNIT:

e Miller et al. (2003) reported a multi-fraction TIMS U-Pb zircon date from a
hornblende pegmatite gabbro of the Esmeralda Peaks unit as 161 + 1 Ma (20
weighted mean *°°Pb/***U age of three nearly concordant fractions) (Fig. 3).

PESHASTIN FORMATION:

e MacDonald et al. (2008b) reported Early Jurassic (Pliensbachian) radiolarian
fossil ages from Peshastin Fm. chert that sits above the Iron Mt. unit (Fig. 3 &
4).

e Miller et al. (1993) and MacDonald et al. (2008a) reported Late Jurassic
(Oxfordian) radiolarian fossil ages from Peshastin Fm. chert that sits above the

Esmeralda Peaks unit (Fig. 3 & 4).

e Miller et al. (2003) reported U-Pb ages of detrital zircons found within a
Peshastin Fm. sandstone to have a bimodal age distribution of 153 Ma and ca.

227 Ma.
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Th/Yb-Ta/Yb diagram from Pearce (1982) for Ingalls
ophiolite complex samples. Symbols are also used in
Figures 11 and 12. Modified from MacDonald et al.

DISCUSSION

e The Iron Mountain unit consists primarily of highly vesicular pillow flows and shallow water limestone (Fig. 6).

e The geochemistry of the Iron Mountain unit is indicative of deep mantle melting as a result of decompression (Fig. 10
& 11) that is transitional to E-MORB. This is consistent with an oceanic islands that erupted in proximity to a
divergent plate boundary.

e The lithologies, age, and transitional OIB-E-MORB affinities suggest the Iron Mountain unit originated as an Early
Jurassic seamount that was in proximity to a divergent plate boundary (Fig. 13).

e The Esmeralda Peaks unit consists primarily of pillow flows, massive diabase, and gabbro (Fig. 7). Sheeted dikes and
“plagiogranite” are rare.

e The geochemistry of the Esmeralda Peaks unit is indicative of shallow mantle melting as a result of decompression
melting that was “contaminated” by arc metasomatism above a downgoing plate (Fig. 10 & 11).

e The Esmeralda Peaks unit contains rare boninites and other “primitive” arc flows (Fig. 10, 11, & 12).

e The lithologies, age, and geochemistry suggest the Esmeralda Peaks unit originated in a forearc setting that
transitioned into a back-arc basin (Fig. 13).

e Accretion of the Iron Mountain unit into a forearc, followed by forearc rifting to establish the Esmeralda Peaks unit,
could had resulted in the age relationships observed in the Peshastin Fm., Sheep Mountain and King Creek areas (Fig.
3,4,5, 8, &13).

e The Cr-spinel geochemistry of the southern harzburgite and dunite supports high degrees of partial melting in a
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forearc setting (Fig. 9); however, the relationship between the mantle and crustal units in the Ingalls is not understood
(Fig. 3).

e The juxtaposition of different mantle types across the Navaho Divide fault zone (Fig. 3), and Mineral assemblages in
the mylonitic lherzolite suggest T > 900° C, lead Miller & Mogk (1987) to suggest that the Ingalls was cut by a possibly
Late Jurassic fracture zone.
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N
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possible initiation by slab rollback
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(2008a).
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Chondrite- & N-MORB-normalized diagrams for Ingalls
ophiolite complex samples. Normalization values from
McDonough & Sun (1995).
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