BEDROCK AQUIFER CHARACTERIZATION BASED ON UNDERGROUND MINE SITE INVESTIGATION: RESULTS AND OPPORTUNITIES

> Alain ROULEAU<sup>1</sup>, Emmanuelle B.GAGNÉ<sup>1</sup> Ali SAEIDI<sup>1</sup>, Vincent CLOUTIER<sup>2</sup>

 <sup>1</sup> Université du Québec à Chicoutimi (UQAC), Qc, Canada
 <sup>2</sup> Université du Québec en Abitibi-Témiscamingue (UQAT), Amos Campus, Qc, Canada





GSA Annual Meetings, Vancouver, BC, Canada, Oct. 19-22, 2014 1

#### MINING & MINE WORKINGS

## We know

Impacts on – Economy – Environnement

We know less Research opportunities (fundamental and applied) on:

- Hydrogeological (H)
- Geomechanical (M)
- Geochemical (C)

phenomenas

## **SUMMARY**

- **1. UNDERGROUND MINE DEWATERING**
- 2. HYDRO-MECHANICAL (H-M) PROCESSES
- 3. HYDRO-CHEMICAL PROCESSES (H-C)
- 4. REGIONAL HYDROGEOLOGICAL STUDY
- 5. CONCLUSION

## EFFECTS OF MINE DRAINAGE

4



Important gw pressure decrease and water table drawdown, except:

- very low-K rock mass
- constant-head surface boundary, e.g. a lake

## SUMMARY

- 1. UNDERGROUND MINE DEWATERING
- 2. HYDRO-MECHANICAL (H-M) PROCESSES
- 3. HYDRO-CHEMICAL PROCESSES (H-C)
- 4. REGIONAL HYDROGEOLOGICAL STUDY
- 5. CONCLUSION

#### HYDRO-MECHANICAL (H-M) PHENOMENA

An excavation induces variations on:



# Effects of $\sigma_N$ & $\tau$

Numerous studies on the effect of normal stress variation ( $\sigma_N$ ) on fracture transmissivity ( $T_f$ ) Effects of shear stress ( $\tau$ ) variation is even more important: High  $T_f$  (x10<sup>2</sup> +) after small shear displacement ( $\approx$  1 mm), before failure

(E. Lamontagne, 2001)

### FURTHER QUESTIONS

Field *vs* laboratory
Incorporating in simulation models
Stress disturbance around boreholes

## SUMMARY

- 1. UNDERGROUND MINE DEWATERING
- 2. HYDRO-MECHANICAL (H-M) PROCESSES
- 3. HYDRO-CHEMICAL PROCESSES (H-C)
- 4. REGIONAL HYDROGEOLOGICAL STUDY
- 5. CONCLUSION

HYDRO-GEOCHEMICAL PHENOMENA AROUND MINE WORKINGS

#### Hydrochemical & isotopic zoning

### Effects of hydrochemistry on rock mass permeability

## HYDROCHEMICAL ZONING



sulfide-rich tailings



sulfide-rich tailings



sulfide-rich tailings



Laboratory experiments:

pH 2 -> T<sub>F</sub> increases (calcite diss., channelling)
 pH 2.5 to 4 -> T<sub>F</sub> decreases (oxy-hydroxyde precip.)

 (A. Benlahcen, 2003)

sulfide-rich tailings



FURTHER QUESTIONS Sequencial phenomena ?

**Process kinetics** 

## SUMMARY

- 1. UNDERGROUND MINE DEWATERING
- 2. HYDRO-MECHANICAL (H-M) PROCESSES
- 3. HYDRO-CHEMICAL PROCESSES (H-C)
- 4. **REGIONAL HYDROGEOLOGICAL STUDY**
- 5. CONCLUSION

In spite of disturbances on geomechanical stress field, hydrochemistry and groundwater flow system

Mine workings provide

 Good observation windows for fractured rock aquifers

 Numerous sampling points for groundwater



(E. B.Gagné, 2014)

In spite of disturbances on geomechanical stress field, hydrochemistry and groundwater flow system

- Important input in regional hydrogeological characterization
- Particularly in region with limited rock outcrops, *e.g.* Precambrian Canadian Shield



#### An example: estimating rock mass *K* using analytical gw flow solutions and readily available data

- Analytical solutions developped to predict gw inflow to underground workings may be used to estimate K values of the bedrock around a mine
- Considered workings: tunnel, radial collector well, a mine as such
- Using realistic ranges of input values based on available data

## Hydraulic conductivity estimates of the rock mass at 3 mine sites



Includes models developed for mines and for radial collector wells

(E. B.Gagné, 2014)

#### **5. CONCLUSION**

Mine workings
 Excavation and drainage
 Hydrogeological (H), geomechanical (M)
 and hydrogeochemical (C) disturbances
 Studies on H-M-C coupling phenomena

 Access to fractured rock aquifers and groundwater sampling points

Important input in regional hydrogeological characterization

Period of increasing mineral resources extraction

#### Thanks to

Fonds de recherche québécois sur la nature et les technologies (FRQNT)

- Coworkers & students
  - Eric Lamontagne, Abdel Benlahcen
  - Ian D. Clark & M. Douglas
  - Guy Archambault, Jayanta Guha, Jacques Carignan
  - Denis W. Roy, Amélia J. Fernandes, Romain Chesnaux

# Thank you for your attention